Improving SAR Automatic Target Recognition via Trusted Knowledge Distillation From Simulated Data

计算机科学 人工智能 合成孔径雷达 蒸馏 自动目标识别 遥感 模式识别(心理学) 计算机视觉 地质学 化学 有机化学
作者
Fangzhou Han,Hongwei Dong,Lingyu Si,Lamei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:5
标识
DOI:10.1109/tgrs.2024.3360470
摘要

In recent years, significant research has been conducted on utilizing simulated data to support Synthetic Aperture Radar Automatic Target Recognition (SAR-ATR) based on deep learning techniques. By distilling the dark knowledge extracted from simulated samples, quality of the learned representations on measured samples can be effectively enhanced. However, our study highlights an important oversight in previous works: unquestioning trust on all simulated samples inevitably introduces the part of dark knowledge that is detrimental to SAR-ATR performance. To address this issue, we introduce evidential learning to estimate the confidence degree of the model after inputting simulated samples, thereby assessing the validity of the dark knowledge to be distilled. Then, the simulated-measured knowledge distillation process will be carried out in a trusted manner. Specifically, we encourage the model to prioritize distilling the dark knowledge with higher validity while avoiding the influence of inferior knowledge through a dynamic confidence weighting method. Additionally, we transform the standard logits-based knowledge distillation loss function into a feature-based one, giving the proposed method the ability to plug-and-play. The above aspects constitute the proposed trusted simulated-measured knowledge distillation method for SAR-ATR. Multiple comparative studies on the Simulated And Measured Paired Labeled Experiment (SAMPLE) dataset demonstrate the effectiveness of our proposed method, which not only achieves superior performance but also maintains the desired computational complexity in the inference phase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Keyan完成签到,获得积分10
1秒前
烟花应助xin采纳,获得10
1秒前
1秒前
4秒前
5秒前
5秒前
明明完成签到 ,获得积分10
5秒前
Akim应助lxh采纳,获得10
7秒前
7秒前
零四零零柒贰完成签到 ,获得积分10
8秒前
罗备完成签到,获得积分10
8秒前
8秒前
顺顺顺发布了新的文献求助10
9秒前
9秒前
ZXJ发布了新的文献求助10
10秒前
高凯璇发布了新的文献求助10
10秒前
12秒前
13秒前
高大厉完成签到,获得积分10
13秒前
xijq发布了新的文献求助10
13秒前
15秒前
plant完成签到 ,获得积分10
16秒前
Shirley完成签到,获得积分10
16秒前
土豪的土豆完成签到 ,获得积分10
16秒前
高高的哈密瓜完成签到 ,获得积分10
17秒前
慕青应助jiabaoyu采纳,获得10
18秒前
仲夏发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
tomorrow发布了新的文献求助10
19秒前
你好发布了新的文献求助10
19秒前
19秒前
糯糯发布了新的文献求助10
19秒前
19秒前
小凉发布了新的文献求助10
20秒前
Aggie发布了新的文献求助10
23秒前
xin发布了新的文献求助10
24秒前
lxh完成签到,获得积分10
24秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845185
求助须知:如何正确求助?哪些是违规求助? 3387315
关于积分的说明 10548855
捐赠科研通 3108079
什么是DOI,文献DOI怎么找? 1712359
邀请新用户注册赠送积分活动 824385
科研通“疑难数据库(出版商)”最低求助积分说明 774751