蜕膜
细胞生物学
间质细胞
细胞粘附分子
蜕膜细胞
小RNA
滋养层
化学
炎症体
细胞粘附
胚胎
生物
癌症研究
粘附
免疫学
炎症
怀孕
胎盘
胎儿
生物化学
遗传学
有机化学
基因
作者
Hsien‐Ming Wu,Liang‐Hsuan Chen,Wei‐Jung Chiu,Chia-Lung Tsai
摘要
In this study, we investigate the effects of miRNA-138-5p and probable G-protein coupled receptor 124 (GPR124)-regulated inflammasome and downstream leukemia inhibitory factor (LIF)-STAT and adhesion molecule signaling in human decidual stromal cells. After informed consent was obtained from women aged 25-38 years undergoing surgical termination of the normal pregnancy and spontaneous miscarriage after 6-9 weeks of gestation, human decidual stromal cells were extracted from the decidual tissue. Extracellular vesicles (EVs) with microRNA (miRNA) between cells have been regarded as critical factors for embryo-maternal interactions on embryo implantation and programming of human pregnancy. MicroRNA-138-5p acts as the transcriptional regulator of GPR124 and the mediator of downstream inflammasome. LIF-regulated STAT activation and expression of integrins might influence embryo implantation. Hence, a better understanding of LIF-STAT and adhesion molecule signaling would elucidate the mechanism of microRNA-138-5p- and GPR124-regulated inflammasome activation on embryo implantation and pregnancy. Our results show that microRNA-138-5p, purified from the EVs of decidual stromal cells, inhibits the expression of GPR124 and the inflammasome, and activates the expression of LIF-STAT and adhesion molecules in human decidual stromal cells. Additionally, the knockdown of GPR124 and NLRP3 through siRNA increases the expression of LIF-STAT and adhesion molecules. The findings of this study help us gain a better understanding the role of EVs, microRNA-138-5p, GPR124, inflammasomes, LIF-STAT, and adhesion molecules in embryo implantation and programming of human pregnancy.
科研通智能强力驱动
Strongly Powered by AbleSci AI