Machine learning-based longitudinal prediction for GJB2-related sensorineural hearing loss

听力图 感音神经性聋 计算机科学 听力学 听力损失 语音识别 队列 多层感知器 人工智能 机器学习 医学 人工神经网络 内科学
作者
Pey‐Yu Chen,Ta-Wei Yang,Yi-Shan Tseng,Cheng‐Yu Tsai,C.-H. Yeh,Yen‐Hui Lee,Pei‐Hsuan Lin,Ting-Chun Lin,Yu‐Jen Wu,Ting‐Hua Yang,Yu‐Ting Chiang,Jacob Shujui Hsu,Chuan‐Jen Hsu,Pei‐Lung Chen,C. H. Chou,Chen‐Chi Wu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:176: 108597-108597 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108597
摘要

Recessive GJB2 variants, the most common genetic cause of hearing loss, may contribute to progressive sensorineural hearing loss (SNHL). The aim of this study is to build a realistic predictive model for GJB2-related SNHL using machine learning to enable personalized medical planning for timely intervention. Patients with SNHL with confirmed biallelic GJB2 variants in a nationwide cohort between 2005 and 2022 were included. Different data preprocessing protocols and computational algorithms were combined to construct a prediction model. We randomly divided the dataset into training, validation, and test sets at a ratio of 72:8:20, and repeated this process ten times to obtain an average result. The performance of the models was evaluated using the mean absolute error (MAE), which refers to the discrepancy between the predicted and actual hearing thresholds. We enrolled 449 patients with 2,184 audiograms available for deep learning analysis. SNHL progression was identified in all models and was independent of age, sex, and genotype. The average hearing progression rate was 0.61 dB HL per year. The best MAE for linear regression, multilayer perceptron, long short-term memory, and attention model were 4.42, 4.38, 4.34, and 4.76 dB HL, respectively. The long short-term memory model performed best with an average MAE of 4.34 dB HL and acceptable accuracy for up to 4 years. We have developed a prognostic model that uses machine learning to approximate realistic hearing progression in GJB2-related SNHL, allowing for the design of individualized medical plans, such as recommending the optimal follow-up interval for this population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十年HLX完成签到 ,获得积分10
3秒前
flymove发布了新的文献求助10
4秒前
黑咖啡完成签到,获得积分10
7秒前
酷酷的涵蕾完成签到 ,获得积分10
8秒前
drwang120完成签到 ,获得积分10
9秒前
lizhiqian2024发布了新的文献求助10
11秒前
小魏哥完成签到,获得积分10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
xxxidgkris应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
zz应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
言非离应助科研通管家采纳,获得150
12秒前
12秒前
顾矜应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
万幸鹿完成签到,获得积分10
13秒前
000完成签到 ,获得积分10
15秒前
塔塔饼完成签到,获得积分10
18秒前
嘻嘻哈哈啊完成签到 ,获得积分10
18秒前
19秒前
呆小仙发布了新的文献求助10
19秒前
昔昔完成签到 ,获得积分10
22秒前
zhuboujs发布了新的文献求助10
23秒前
jie完成签到 ,获得积分10
25秒前
minguk完成签到,获得积分10
29秒前
zhuboujs完成签到,获得积分10
30秒前
Thunnus001完成签到,获得积分10
31秒前
白元正完成签到,获得积分10
31秒前
西西完成签到 ,获得积分10
32秒前
36秒前
JXDYYZK完成签到,获得积分10
36秒前
柴yuki完成签到 ,获得积分10
39秒前
39秒前
陈丫完成签到,获得积分10
39秒前
lizhiqian2024发布了新的文献求助10
41秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346581
关于积分的说明 10329787
捐赠科研通 3063102
什么是DOI,文献DOI怎么找? 1681341
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726