已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Predicting bilgewater emulsion stability by oil separation using image processing and machine learning

乳状液 奶油 浊度 盐度 废水 环境科学 数学 统计 环境工程 化学 生态学 生物化学 生物 海洋学 地质学
作者
Woo Hyoung Lee,Cheol Young Park,Daniela Diaz,Kelsey L. Rodriguez,Jongik Chung,Jared Church,Marjorie R. Willner,Jeffrey G. Lundin,Danielle M. Paynter
出处
期刊:Water Research [Elsevier BV]
卷期号:223: 118977-118977 被引量:9
标识
DOI:10.1016/j.watres.2022.118977
摘要

Bilgewater is a shipboard multi-component oily wastewater, combining numerous wastewater sources. A better understanding of bilgewater emulsions is required for proper wastewater management to meet discharge regulations. In this study, we developed 360 emulsion samples based on commonly used Navy cleaner data and previous bilgewater composition studies. Oil value (OV) was obtained from image analysis of oil/creaming layer and validated by oil separation (OS) which was experimentally determined using a gravimetric method. OV (%) showed good agreement with OS (%), indicating that a simple image-based parameter can be used for emulsion stability prediction model development. An ANOVA analysis was conducted of the five variables (Cleaner, Salinity, Suspended Solids [SS], pH, and Temperature) that significantly impacted estimates of OV, finding that the Cleaner, Salinity, and SS variables were statistically significant (p < 0.05), while pH and Temperature were not. In general, most cleaners showed improved oil separation with salt additions. Novel machine learning (ML)-based predictive models of both classification and regression for bilgewater emulsion stability were then developed using OV. For classification, the random forest (RF) classifiers achieved the most accurate prediction with F1-score of 0.8224, while in regression-based models the decision tree (DT) regressor showed the highest prediction of emulsion stability with the average mean absolute error (MAE) of 0.1611. Turbidity also showed a good emulsion prediction with RF regressor (MAE of 0.0559) and RF classifier (F1-score of 0.9338). One predictor variable removal test showed that Salinity, SS, and Temperature are the most impactful variables in the developed models. This is the first study to use image processing and machine learning for the prediction of oil separation for the application of bilgewater assessment within the marine sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
2秒前
蜡笔小新发布了新的文献求助10
3秒前
Antheali应助翁雁丝采纳,获得10
3秒前
3秒前
Orange应助Kate采纳,获得10
4秒前
小欣6116发布了新的文献求助10
4秒前
5秒前
6秒前
徐徐图之完成签到 ,获得积分10
6秒前
6秒前
zhouyu完成签到,获得积分10
7秒前
noclone完成签到 ,获得积分10
7秒前
美女发布了新的文献求助10
7秒前
klicking发布了新的文献求助10
8秒前
深情安青应助我爱白鹿采纳,获得10
9秒前
vida完成签到 ,获得积分10
9秒前
张佳佳发布了新的文献求助10
10秒前
10秒前
充电宝应助阿才不是阿财采纳,获得10
10秒前
香蕉觅云应助Zblue采纳,获得30
11秒前
乌龙茶干完成签到,获得积分10
11秒前
氯吡格雷发布了新的文献求助10
12秒前
12秒前
深情安青应助闪闪含海采纳,获得10
14秒前
郭嘉仪发布了新的文献求助10
16秒前
小二郎应助Kate采纳,获得10
19秒前
冷酷凝梦关注了科研通微信公众号
20秒前
A001发布了新的文献求助10
20秒前
21秒前
21秒前
11完成签到 ,获得积分10
22秒前
科研通AI5应助郭嘉仪采纳,获得10
22秒前
22秒前
23秒前
祖国小红花完成签到,获得积分10
25秒前
平常映雁完成签到,获得积分10
26秒前
学术小白发布了新的文献求助10
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4993722
求助须知:如何正确求助?哪些是违规求助? 4241456
关于积分的说明 13214330
捐赠科研通 4036842
什么是DOI,文献DOI怎么找? 2208748
邀请新用户注册赠送积分活动 1219682
关于科研通互助平台的介绍 1137980