scMHNN: a novel hypergraph neural network for integrative analysis of single-cell epigenomic, transcriptomic and proteomic data

计算机科学 超图 数据集成 表观遗传学 模态(人机交互) 注释 人工智能 数据挖掘 机器学习 生物 数学 生物化学 基因 离散数学 基因表达 DNA甲基化
作者
Wei Li,Bin Xiang,Fan Yang,Yu Rong,Yanbin Yin,Jianhua Yao,Han Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (6) 被引量:3
标识
DOI:10.1093/bib/bbad391
摘要

Technological advances have now made it possible to simultaneously profile the changes of epigenomic, transcriptomic and proteomic at the single cell level, allowing a more unified view of cellular phenotypes and heterogeneities. However, current computational tools for single-cell multi-omics data integration are mainly tailored for bi-modality data, so new tools are urgently needed to integrate tri-modality data with complex associations. To this end, we develop scMHNN to integrate single-cell multi-omics data based on hypergraph neural network. After modeling the complex data associations among various modalities, scMHNN performs message passing process on the multi-omics hypergraph, which can capture the high-order data relationships and integrate the multiple heterogeneous features. Followingly, scMHNN learns discriminative cell representation via a dual-contrastive loss in self-supervised manner. Based on the pretrained hypergraph encoder, we further introduce the pre-training and fine-tuning paradigm, which allows more accurate cell-type annotation with only a small number of labeled cells as reference. Benchmarking results on real and simulated single-cell tri-modality datasets indicate that scMHNN outperforms other competing methods on both cell clustering and cell-type annotation tasks. In addition, we also demonstrate scMHNN facilitates various downstream tasks, such as cell marker detection and enrichment analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助青松果采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
等待冬亦应助科研通管家采纳,获得10
1秒前
等待冬亦应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
hjyylab应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
魏尼小熊完成签到 ,获得积分10
1秒前
大个应助科研通管家采纳,获得10
2秒前
yi应助科研通管家采纳,获得10
2秒前
Aspirin发布了新的文献求助10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
DTP完成签到,获得积分10
2秒前
完美世界应助科研通管家采纳,获得10
2秒前
hjyylab应助科研通管家采纳,获得20
2秒前
2秒前
汉堡包应助za==采纳,获得10
3秒前
尔蓝红颜发布了新的文献求助10
3秒前
鱼贝贝发布了新的文献求助10
3秒前
hsxg发布了新的文献求助10
4秒前
燕子发布了新的文献求助10
4秒前
王之争霸完成签到,获得积分10
4秒前
糟糕的铁锤完成签到,获得积分0
4秒前
小垃圾10号完成签到,获得积分10
4秒前
魏尼小熊关注了科研通微信公众号
5秒前
刘cc发布了新的文献求助10
5秒前
5秒前
6秒前
YOLO发布了新的文献求助10
6秒前
爆米花应助快乐滑板采纳,获得10
7秒前
7秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841327
求助须知:如何正确求助?哪些是违规求助? 3383394
关于积分的说明 10529546
捐赠科研通 3103500
什么是DOI,文献DOI怎么找? 1709307
邀请新用户注册赠送积分活动 823049
科研通“疑难数据库(出版商)”最低求助积分说明 773806