亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

TCI-UNet: transformer-CNN interactive module for medical image segmentation

计算机科学 分割 变压器 特征提取 人工智能 图像分割 模式识别(心理学) 数据挖掘 物理 量子力学 电压
作者
Xuan Bian,Guanglei Wang,Yanlin Wu,Yan Li,Hongrui Wang
出处
期刊:Biomedical Optics Express [The Optical Society]
卷期号:14 (11): 5904-5904 被引量:7
标识
DOI:10.1364/boe.499640
摘要

Medical image segmentation is a crucial step in developing medical systems, especially for assisting doctors in diagnosing and treating diseases. Currently, UNet has become the preferred network for most medical image segmentation tasks and has achieved tremendous success. However, due to the limitations of convolutional operation mechanisms, its ability to model long-range dependencies between features is limited. With the success of transformers in the computer vision (CV) field, many excellent models that combine transformers with UNet have emerged, but most of them have fixed receptive fields and a single feature extraction method. To address this issue, we propose a transformer-CNN interactive (TCI) feature extraction module and use it to construct TCI-UNet. Specifically, we improve the self-attention mechanism in transformers to enhance the guiding ability of attention maps for computational resource allocation. It can strengthen the network's ability to capture global contextual information from feature maps. Additionally, we introduce local multi-scale information to supplement feature information, allowing the network to focus on important local information while modeling global contextual information. This improves the network's capability to extract feature map information and facilitates effective interaction between global and local information within the transformer, enhancing the representational power of transformers. We conducted a large number of experiments on the LiTS-2017 and ISIC-2018 datasets to verify the effectiveness of our proposed method, with DCIE values of 93.81% and 88.22%, respectively. Through ablation experiments, we proved the effectiveness of the TCI module, and in comparison with other state-of-the-art (SOTA) networks, we demonstrated the superiority of TCI-UNet in accuracy and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ly完成签到 ,获得积分10
9秒前
11秒前
hugeyoung完成签到,获得积分10
45秒前
学生信的大叔完成签到,获得积分10
47秒前
50秒前
Guin发布了新的文献求助30
53秒前
pegasus0802完成签到,获得积分10
57秒前
1分钟前
mix完成签到,获得积分10
1分钟前
1分钟前
白星辰完成签到 ,获得积分10
2分钟前
2分钟前
Benhnhk21完成签到,获得积分10
2分钟前
忘忧Aquarius完成签到,获得积分10
2分钟前
2分钟前
Huzhu应助ZhaoW采纳,获得10
3分钟前
打打应助vinci采纳,获得10
3分钟前
湘湘完成签到 ,获得积分10
3分钟前
Zhaoyuemeng完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
vinci发布了新的文献求助10
4分钟前
5分钟前
在水一方应助自信花瓣采纳,获得10
5分钟前
1793480753发布了新的文献求助10
5分钟前
科研通AI2S应助ZhaoW采纳,获得10
5分钟前
3sigma发布了新的文献求助10
5分钟前
桃七七完成签到 ,获得积分10
5分钟前
hi完成签到,获得积分20
6分钟前
ssu90完成签到 ,获得积分10
6分钟前
科研通AI2S应助hi采纳,获得10
6分钟前
Lily完成签到,获得积分10
6分钟前
6分钟前
瞄准月亮完成签到 ,获得积分10
7分钟前
level完成签到 ,获得积分10
7分钟前
香蕉觅云应助vinci采纳,获得10
7分钟前
ZYP应助qiii采纳,获得10
7分钟前
香蕉觅云应助科研通管家采纳,获得10
7分钟前
8分钟前
量子星尘发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
上海破产法庭破产实务案例精选(2019-2024) 500
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5476432
求助须知:如何正确求助?哪些是违规求助? 4578082
关于积分的说明 14363420
捐赠科研通 4505993
什么是DOI,文献DOI怎么找? 2469042
邀请新用户注册赠送积分活动 1456527
关于科研通互助平台的介绍 1430272