Critical Role and Recent Development of Separator in Zinc-Air Batteries

分离器(采油) 环境科学 工程类 材料科学 冶金 物理 热力学
作者
Meng-Yin Wang,Ruo-Bei Huang,Jianfeng Xiong,Jing‐Hua Tian,Jianfeng Li,Zhong‐Qun Tian
出处
期刊:Acta Physico-chimica Sinica [Acta Physico-Chimica Sinica & University Chemistry Editorial Office, Peking University]
卷期号:40 (6): 2307017-2307017 被引量:11
标识
DOI:10.3866/pku.whxb202307017
摘要

Abstract: Amidst widespread consumption and the scarcity of non-renewable fossil fuels, the advancement of clean energy sources like solar and wind energy holds immense significance. Nevertheless, these clean energy sources grapple with unstable power supply, underscoring the pressing need for the enhancement of large-scale energy conversion and storage devices. Zinc-air batteries, boasting high energy density, safety, affordability, ease of assembly, eco-friendliness, and abundant zinc metal resources, exhibit promising potential as energy storage and conversion solutions. Nevertheless, various challenges persist in their application, including a limited cycle life and inadequate power density. Throughout the charge and discharge cycles, factors such as the dendritic growth of the zinc negative electrode, the formation of ZnO passivation layers, electrolyte evaporation, and side reactions involving the diffusion of zincate ions to the positive electrode collectively exert influence on the performance of zinc-air batteries. The separator plays a crucial role in zinc-air batteries by isolating the positive and negative electrodes to prevent short circuits, and these aforementioned issues can be resolved through optimization of the design. Until now, the commonly employed separators in zinc-air batteries can be categorized into various types:standard porous separators, anion exchange membranes, polymer gel electrolyte membranes, and composite membranes comprising diverse polymer compositions. Among these, within the context of separator research, porous separators of the polyolefin type are generally utilized in aqueous alkaline zinc-air batteries. Nevertheless, their pronounced hydrophobic nature results in markedly diminished ion conductivity. Conversely, gel-based solid-state or semi-solid-state electrolyte membranes are tailored for flexible electronic device applications. This adaptation ensures that zinc-air batteries uphold favorable electrochemical performance even under deformation conditions, simultaneously addressing the challenge of electrolyte volatilization to a certain degree. Fundamental attributes of the separator, such as pore size, hydrophilicity, and other properties, significantly impact the battery's lifespan and charge/discharge performance. Nevertheless, research on separators and their modifications to enhance zinc-air battery performance, along with the underlying principles, lags behind other aspects of zinc-air battery research, presenting ample room for advancement. This review offers a concise overview of zinc-air battery development, using aqueous alkaline zinc-air batteries as an example to elucidate their operational principles. The objective is to grasp the challenges leading to battery failure in different components and to particularly analyze how separator performance influences overall battery efficiency. This includes aspects such as ion selectivity, ion conductivity, stability, and water retention of the separator. The overview is divided into two main sections:(1) elucidating the fundamental structure and operational principles of the zinc-air battery, and (2) comprehensively exploring the fundamental attributes of the separator and its pivotal function within the zinc-air battery. The research progress and perspective for the development of zinc-air battery separators are also discussed and anticipated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sldragon发布了新的文献求助10
刚刚
加油少年发布了新的文献求助10
1秒前
艾原完成签到 ,获得积分10
2秒前
Lee发布了新的文献求助20
2秒前
3秒前
西子阳发布了新的文献求助10
3秒前
赘婿应助zhao采纳,获得10
4秒前
清秀的舞仙完成签到,获得积分10
5秒前
羊大侠发布了新的文献求助10
6秒前
感动秋发布了新的文献求助10
6秒前
Andone完成签到,获得积分10
6秒前
无极微光应助volition采纳,获得20
6秒前
洋溢完成签到,获得积分10
6秒前
7秒前
7秒前
科研通AI2S应助王也夫采纳,获得10
7秒前
虚心的垣发布了新的文献求助30
8秒前
欣慰的友桃完成签到,获得积分10
8秒前
Cc发布了新的文献求助10
9秒前
9秒前
西子阳完成签到,获得积分10
10秒前
wxt完成签到,获得积分10
11秒前
11秒前
believe完成签到,获得积分10
11秒前
12秒前
12秒前
zjl完成签到,获得积分10
12秒前
mouxq发布了新的文献求助10
12秒前
英俊的铭应助Rick采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
霓霓发布了新的文献求助10
13秒前
13秒前
WYYA发布了新的文献求助20
14秒前
14秒前
sldragon完成签到,获得积分10
14秒前
14秒前
bkagyin应助tietie采纳,获得10
14秒前
哈no完成签到,获得积分10
15秒前
YOLO发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601362
求助须知:如何正确求助?哪些是违规求助? 4686881
关于积分的说明 14846604
捐赠科研通 4680822
什么是DOI,文献DOI怎么找? 2539355
邀请新用户注册赠送积分活动 1506197
关于科研通互助平台的介绍 1471293