A Dual-Perspective Spatiotemporal Fusion Model for Remote Sensing Images by Discriminative Learning of the Spatial and Temporal Mapping

计算机科学 判别式 人工智能 深度学习 时间分辨率 背景(考古学) 模式识别(心理学) 计算机视觉 地理 物理 考古 量子力学
作者
Zhonghua Qian,Linwei Yue,Xiao Xie,Qiangqiang Yuan,Huanfeng Shen
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 12505-12520 被引量:1
标识
DOI:10.1109/jstars.2024.3426944
摘要

Spatiotemporal fusion (STF) has received widespread attention as a cost-effective solution to the spatiotemporal conflicts in remote sensing images. Massive efforts have been made in the development of STF technology, and deep-learning methods have shown great potential in obtaining state-of-the-art results in recent years. However, it is still challenging to effectively fuse images with land-cover changes. The main problem is that the fine-resolution temporal changes are difficult to accurately model in the fusion stage due to the complex mapping relationships of the temporal features in different scale spaces. In this article, we propose a novel STF method with a dual-perspective framework, where the core idea is to predict the target information by discriminative learning of the spatial and temporal modeling for estimating heterogeneous temporal changes. Specifically, an encoder–decoder architecture based on a Swin transformer is designed to extract the global context information from the temporal change maps and predict the target image by learning the temporal mapping at a fine scale. A parallel subnetwork is further used to learn the spatial mapping across coarse-to-fine scales, considering the temporal changes. Channel-spatial attention is introduced to guide the model to focus on reconstructing the features delineating heterogeneous textures and temporal changes. The estimation from the dual perspectives is then fused to generate the final reconstructed image. Extensive experiments on three public datasets verified the superiority of the proposed method, compared with the mainstream STF algorithms, especially on image pairs with land-cover and phenological changes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助花花采纳,获得10
2秒前
烤鸭本鸭完成签到,获得积分10
5秒前
丘比特应助cyy1226采纳,获得10
6秒前
8秒前
8秒前
12秒前
xkh发布了新的文献求助10
12秒前
ljsash完成签到,获得积分10
13秒前
13秒前
lmplzzp发布了新的文献求助10
14秒前
17秒前
ljsash发布了新的文献求助10
17秒前
iNk应助月牙采纳,获得40
20秒前
22秒前
迷人的寒风完成签到,获得积分10
28秒前
或无情发布了新的文献求助10
28秒前
CodeCraft应助会撒娇的雁易采纳,获得10
28秒前
嘎嘎嘎嘎完成签到,获得积分10
28秒前
GreenArrow应助七七八八采纳,获得10
31秒前
科目三应助田圭采纳,获得10
32秒前
ding应助新威宝贝采纳,获得10
32秒前
33秒前
Hh完成签到,获得积分10
34秒前
安渝完成签到 ,获得积分10
36秒前
CryBill完成签到,获得积分10
36秒前
36秒前
或无情完成签到,获得积分10
36秒前
sunflower完成签到,获得积分0
37秒前
38秒前
caicainuegou发布了新的文献求助10
39秒前
BZ发布了新的文献求助30
44秒前
adam完成签到,获得积分10
44秒前
45秒前
Zain_init应助科研通管家采纳,获得10
45秒前
在水一方应助科研通管家采纳,获得10
45秒前
ICEBLUE应助科研通管家采纳,获得10
45秒前
隐形曼青应助科研通管家采纳,获得30
45秒前
SYLH应助科研通管家采纳,获得10
45秒前
zs1234发布了新的文献求助10
45秒前
Pothos完成签到,获得积分10
45秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823575
求助须知:如何正确求助?哪些是违规求助? 3365926
关于积分的说明 10438369
捐赠科研通 3085092
什么是DOI,文献DOI怎么找? 1697152
邀请新用户注册赠送积分活动 816235
科研通“疑难数据库(出版商)”最低求助积分说明 769462