Development of a nomogram-based model incorporating radiomic features from follow-up longitudinal lung CT images to distinguish invasive adenocarcinoma from benign lesions: a retrospective study

医学 列线图 腺癌 无线电技术 回顾性队列研究 放射科 医学物理学 外科 肿瘤科 内科学 癌症
作者
Zheng‐Ming Wang,Fei Wang,Yan Yang,Weijie Fan,Li Wen,Dong Zhang
出处
期刊:BMC Pulmonary Medicine [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12890-024-03360-8
摘要

To develop and validate a radiomic model for differentiating pulmonary invasive adenocarcinomas from benign lesions based on follow-up longitudinal CT images. This is a retrospective study including 336 patients (161 with invasive adenocarcinomas and 175 with benign lesions) who underwent baseline (T0) and follow-up (T1) CT scans from January 2016 to June 2022. The patients were randomized in a 7:3 ratio into training and test sets. Radiomic features were extracted from lesion volumes of interest on longitudinal CT images at T0 and T1. Differences in radiomic features between T1 and T0 were defined as delta-radiomic features. Logistic regression was used to build models based on clinicoradiological (CR), T0, T1, and delta radiomic features and compute signatures. Finally, a nomogram based on the CR, T0, T1 and delta signatures was constructed. Model performance was evaluated for calibration, discrimination, and clinical utility. The T1 radiomic model was superior to the other independent models. In the training set, it had an area under the curve (AUC) of 0.858), superior to the CR model (AUC 0.694), the T0 radiomic model (AUC 0.825), and the delta radiomic model (AUC 0.734). In the test set, it had an AUC of 0.817, again outperforming the CR model (AUC 0.578), the T0 radiomic model (AUC 0.789), and the delta radiomic model (AUC 0.647). The nomogram incorporating the CR, T0, T1 and delta signatures showed the best predictive performance in both the training (AUC: 0.906) and test sets (AUC: 0.856), and it exhibited excellent fit with calibration curves. Decision curve analysis provided additional validation of the clinical utility of the nomogram. A nomogram utilizing radiomic features extracted from longitudinal CT images can enhance the discriminative capability between pulmonary invasive adenocarcinomas and benign lesions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fancy完成签到 ,获得积分10
刚刚
Yolen LI发布了新的文献求助10
1秒前
madcatalysis完成签到,获得积分10
2秒前
2秒前
无花果应助平淡夏云采纳,获得10
3秒前
耍酷亦玉完成签到,获得积分10
3秒前
六78910发布了新的文献求助10
3秒前
隐形曼青应助mouse采纳,获得10
3秒前
优雅含莲完成签到 ,获得积分10
4秒前
yanananan完成签到,获得积分10
5秒前
sashimi完成签到,获得积分10
6秒前
czyzyzy完成签到,获得积分10
7秒前
专注的问筠完成签到,获得积分10
7秒前
8秒前
10秒前
科目三应助李怡卓采纳,获得10
10秒前
半岛学习盒完成签到,获得积分10
10秒前
11秒前
聪明蛋子发布了新的文献求助10
12秒前
xialuoke发布了新的文献求助10
12秒前
六78910完成签到,获得积分10
14秒前
科研通AI5应助111111采纳,获得10
14秒前
14秒前
15秒前
16秒前
16秒前
17秒前
CC发布了新的文献求助10
22秒前
mouse发布了新的文献求助10
22秒前
彭于晏应助牛油果采纳,获得10
22秒前
xialuoke发布了新的文献求助10
26秒前
berry完成签到,获得积分10
27秒前
陆康完成签到 ,获得积分10
27秒前
28秒前
幸福的小刺猬完成签到 ,获得积分10
30秒前
李怡卓发布了新的文献求助10
33秒前
LongH2完成签到,获得积分10
33秒前
Y20完成签到,获得积分10
36秒前
科目三应助xialuoke采纳,获得10
36秒前
37秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Wh-exclamatives, Imperatives and Wh-questions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827058
求助须知:如何正确求助?哪些是违规求助? 3369284
关于积分的说明 10455453
捐赠科研通 3088934
什么是DOI,文献DOI怎么找? 1699541
邀请新用户注册赠送积分活动 817369
科研通“疑难数据库(出版商)”最低求助积分说明 770208