A Method for Real-Time Recognition of Safflower Filaments in Unstructured Environments Using the YOLO-SaFi Model

计算机科学 人工智能 渲染(计算机图形) 卷积神经网络 骨干网 模式识别(心理学) 计算机视觉 计算机网络
作者
Bangbang Chen,Feng Ding,Baojian Ma,Liqiang Wang,Shanping Ning
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:24 (13): 4410-4410 被引量:1
标识
DOI:10.3390/s24134410
摘要

The identification of safflower filament targets and the precise localization of picking points are fundamental prerequisites for achieving automated filament retrieval. In light of challenges such as severe occlusion of targets, low recognition accuracy, and the considerable size of models in unstructured environments, this paper introduces a novel lightweight YOLO-SaFi model. The architectural design of this model features a Backbone layer incorporating the StarNet network; a Neck layer introducing a novel ELC convolution module to refine the C2f module; and a Head layer implementing a new lightweight shared convolution detection head, Detect_EL. Furthermore, the loss function is enhanced by upgrading CIoU to PIoUv2. These enhancements significantly augment the model's capability to perceive spatial information and facilitate multi-feature fusion, consequently enhancing detection performance and rendering the model more lightweight. Performance evaluations conducted via comparative experiments with the baseline model reveal that YOLO-SaFi achieved a reduction of parameters, computational load, and weight files by 50.0%, 40.7%, and 48.2%, respectively, compared to the YOLOv8 baseline model. Moreover, YOLO-SaFi demonstrated improvements in recall, mean average precision, and detection speed by 1.9%, 0.3%, and 88.4 frames per second, respectively. Finally, the deployment of the YOLO-SaFi model on the Jetson Orin Nano device corroborates the superior performance of the enhanced model, thereby establishing a robust visual detection framework for the advancement of intelligent safflower filament retrieval robots in unstructured environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拉长的问凝完成签到 ,获得积分10
1秒前
3秒前
JSzzZ完成签到,获得积分10
3秒前
heli完成签到,获得积分10
3秒前
迪迦奥特曼完成签到,获得积分10
4秒前
Teeca完成签到,获得积分10
6秒前
心肌细胞完成签到,获得积分10
7秒前
9秒前
9秒前
cxlhzq发布了新的文献求助10
10秒前
11秒前
满意的雪枫完成签到 ,获得积分10
13秒前
14秒前
16秒前
zzuwxj发布了新的文献求助10
16秒前
zzz发布了新的文献求助10
17秒前
GBRUCE完成签到,获得积分10
19秒前
CodeCraft应助jingjing-8995采纳,获得10
19秒前
Proddy发布了新的文献求助10
20秒前
浩银完成签到,获得积分20
20秒前
SciGPT应助优雅的香采纳,获得10
20秒前
一年级完成签到,获得积分10
23秒前
花菜炒肉完成签到 ,获得积分10
23秒前
abb完成签到 ,获得积分10
28秒前
7Hours完成签到,获得积分10
29秒前
30秒前
30秒前
34秒前
mymEN完成签到 ,获得积分10
34秒前
ringo发布了新的文献求助10
35秒前
OK佛发布了新的文献求助10
36秒前
36秒前
脑洞疼应助aaronpancn采纳,获得10
37秒前
ATOM发布了新的文献求助10
39秒前
月光入梦发布了新的文献求助10
41秒前
优雅的香完成签到,获得积分10
41秒前
42秒前
Wunier61发布了新的文献求助10
43秒前
Proddy完成签到,获得积分10
43秒前
OK佛完成签到,获得积分10
44秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Framed World: Tourism, Tourists and Photography (New Directions in Tourism Analysis) 1st Edition 200
Graphene Quantum Dots (GQDs): Advances in Research and Applications 200
Advanced Introduction to US Civil Liberties 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825251
求助须知:如何正确求助?哪些是违规求助? 3367521
关于积分的说明 10446344
捐赠科研通 3086892
什么是DOI,文献DOI怎么找? 1698353
邀请新用户注册赠送积分活动 816713
科研通“疑难数据库(出版商)”最低求助积分说明 769937