细胞凋亡
肽
有丝分裂
细胞生物学
β淀粉样蛋白
音猬因子
阻塞(统计)
BETA(编程语言)
生物
淀粉样蛋白(真菌学)
化学
生物化学
植物
信号转导
统计
数学
计算机科学
程序设计语言
作者
Bo-Yu Hou,Ming-Hsuan Wu,Hui‐Yu Hsu,Yi‐Chun Lin,Ding‐I Yang
摘要
The amyloid-beta peptide (Aβ) is the neurotoxic component in senile plaques of Alzheimer’s disease (AD) brains. Previously we have reported that Aβ toxicity is mediated by the induction of sonic hedgehog (SHH) to trigger cell cycle re-entry (CCR) and apoptosis in post-mitotic neurons. Basella alba is a vegetable whose polysaccharides carry immunomodulatory and anti-cancer actions, but their protective effects against neurodegeneration have never been reported. Herein, we tested whether polysaccharides derived from Basella alba (PPV-6) may inhibit Aβ toxicity and explored its underlying mechanisms. In differentiated rat cortical neurons, Aβ25-35 reduced cell viability, damaged neuronal structure, and compromised mitochondrial bioenergetic functions, all of which were recovered by PPV-6. Immunocytochemistry and western blotting revealed that Aβ25-35-mediated induction of cell cycle markers including cyclin D1, proliferating cell nuclear antigen (PCNA), and histone H3 phosphorylated at Ser-10 (p-Histone H3) in differentiated neurons was all suppressed by PPV-6, along with mitigation of caspase-3 cleavage. Further studies revealed that PPV-6 inhibited Aβ25-35 induction of SHH; indeed, PPV-6 was capable of suppressing neuronal CCR and apoptosis triggered by the exogenous N-terminal fragment of sonic hedgehog (SHH-N). Our findings demonstrated that, in the fully differentiated neurons, PPV-6 exerts protective actions against Aβ neurotoxicity via the downregulation of SHH to suppress neuronal CCR and apoptosis.
科研通智能强力驱动
Strongly Powered by AbleSci AI