ChatExosome: An Artificial Intelligence (AI) Agent Based on Deep Learning of Exosomes Spectroscopy for Hepatocellular Carcinoma (HCC) Diagnosis

化学 肝细胞癌 微泡 癌症研究 人工智能 小RNA 生物化学 计算机科学 生物 基因
作者
Zhejun Yang,Tongtong Tian,Jilie Kong,Hui Chen
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:4
标识
DOI:10.1021/acs.analchem.4c06677
摘要

Large language models (LLMs) hold significant promise in the field of medical diagnosis. There are still many challenges in the direct diagnosis of hepatocellular carcinoma (HCC). α-Fetoprotein (AFP) is a commonly used tumor marker for liver cancer. However, relying on AFP can result in missed diagnoses of HCC. We developed an artificial intelligence (AI) agent centered on LLMs, named ChatExosome, which created an interactive and convenient system for clinical spectroscopic analysis and diagnosis. ChatExosome consists of two main components: the first is the deep learning of the Raman fingerprinting of exosomes derived from HCC. Based on a patch-based 1D self-attention mechanism and downsampling, the feature fusion transformer (FFT) was designed to process the Raman spectra of exosomes. It achieved accuracies of 95.8% for cell-derived exosomes and 94.1% for 165 clinical samples, respectively. The second component is the interactive chat agent based on LLM. The retrieval-augmented generation (RAG) method was utilized to enhance the knowledge related to exosomes. Overall, LLM serves as the core of this interactive system, which is capable of identifying users' intentions and invoking the appropriate plugins to process the Raman data of exosomes. This is the first AI agent focusing on exosome spectroscopy and diagnosis, enhancing the interpretability of classification results, enabling physicians to leverage cutting-edge medical research and artificial intelligence techniques to optimize medical decision-making processes, and it shows great potential in intelligent diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TWX发布了新的文献求助30
1秒前
1秒前
2秒前
2秒前
duolaAmeng完成签到,获得积分10
3秒前
小闫发布了新的文献求助10
3秒前
菜小包发布了新的文献求助10
3秒前
盛夏如花发布了新的文献求助10
4秒前
bbj发布了新的文献求助10
4秒前
阳光路上发布了新的文献求助10
4秒前
静一发布了新的文献求助10
4秒前
小天才发布了新的文献求助10
5秒前
bkagyin应助单纯雨琴采纳,获得10
6秒前
深情安青应助千阳采纳,获得10
6秒前
Linkingrains发布了新的文献求助10
6秒前
orixero应助一一采纳,获得10
7秒前
小闫完成签到,获得积分10
7秒前
7秒前
吴帆发布了新的文献求助10
7秒前
8秒前
天天开心完成签到 ,获得积分10
8秒前
6nine9发布了新的文献求助30
8秒前
搜集达人应助科研通管家采纳,获得30
9秒前
Orange应助zfm采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
10秒前
思源应助科研通管家采纳,获得30
10秒前
guozizi应助科研通管家采纳,获得30
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
guozizi应助科研通管家采纳,获得30
10秒前
完美世界应助科研通管家采纳,获得10
11秒前
liang白开完成签到,获得积分10
11秒前
汉堡包应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
SciGPT应助科研通管家采纳,获得10
11秒前
ttang发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4510949
求助须知:如何正确求助?哪些是违规求助? 3956880
关于积分的说明 12266904
捐赠科研通 3617830
什么是DOI,文献DOI怎么找? 1990727
邀请新用户注册赠送积分活动 1027084
科研通“疑难数据库(出版商)”最低求助积分说明 918398