Electrospun Biomimetic Periosteum Promotes Diabetic Bone Defect Regeneration through Regulating Macrophage Polarization and Sequential Drug Release

骨膜 再生(生物学) 材料科学 巨噬细胞极化 药品 巨噬细胞 生物医学工程 细胞生物学 纳米技术 药理学 医学 化学 解剖 体外 生物 生物化学
作者
Yu Zhuang,Dingwei Wu,Lvyang Zhou,B. Liu,Xingkai Zhao,Jianming Yang,Wenge Liu,Zhenyu Wang,Yunquan Zheng,Xianai Shi
出处
期刊:ACS Biomaterials Science & Engineering [American Chemical Society]
标识
DOI:10.1021/acsbiomaterials.4c02095
摘要

The inadequate vascularization and abnormal immune microenvironment in the diabetic bone defect region present a significant challenge to osteogenic regulation. Inspired by the distinctive characteristics of healing staged in diabetic bone defects and the structure–function relationship in the natural periosteum, we fabricated an electrospun bilayer biomimetic periosteum (Bilayer@E) to promote regeneration of diabetic bone defects. Here, the inner layer of biomimetic periosteum was fabricated using coaxial electrospinning fibers, with a shell incorporating zinc oxide nanoparticles (ZnO NPs) and a core containing silicon dioxide nanoparticles (SiO2 NPs) mimicking the cambium of periosteum; the outer layer consisted of randomly aligned electrospun fibers loaded with deferoxamine (DFO), simulating the fibrous layer of periosteum; finally, epigallocatechin-3-gallate (EGCG) was coated onto the bilayer membrane to obtain Bilayer@E. The presence of EGCG on the Bilayer@E surface efficiently triggers a phenotypic transition in macrophages, shifting them from an M1 proinflammatory state to an M2 anti-inflammatory state. Moreover, the sequential release of ZnO NPs, DFO, and SiO2 NPs exhibits antimicrobial characteristics while coordinating angiogenesis and promoting osteogenic mineralization in cells. Importantly, the biomimetic periosteum shows strong in vivo bone tissue and periosteal regeneration properties in diabetic rats. The integration of sequential drug release and immunomodulation, tailored to meet the specific healing requirements during bone regeneration, offers new insights for advancing the application of biomaterials in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
楼小柚发布了新的文献求助10
1秒前
骑羊完成签到,获得积分10
1秒前
科研通AI5应助阿瑶与呆呆采纳,获得30
2秒前
皮肤科应助科研通管家采纳,获得30
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
zhzzhz应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
科目三应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
黄bb应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
黄bb应助科研通管家采纳,获得10
5秒前
失眠醉易应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
小马甲应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助村长夫人采纳,获得10
5秒前
7秒前
楼小柚完成签到,获得积分10
9秒前
今后应助33采纳,获得50
11秒前
Shirley发布了新的文献求助10
12秒前
12秒前
13秒前
liqunfang完成签到,获得积分20
14秒前
15秒前
彭凯发布了新的文献求助10
18秒前
liqunfang发布了新的文献求助10
18秒前
未央歌完成签到 ,获得积分10
23秒前
xxi完成签到,获得积分10
24秒前
深情安青应助善良的沛山采纳,获得10
25秒前
cdercder应助xxi采纳,获得10
30秒前
乐乐应助火星天采纳,获得10
34秒前
35秒前
outman发布了新的文献求助30
36秒前
善学以致用应助www采纳,获得10
37秒前
风趣问雁完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776925
求助须知:如何正确求助?哪些是违规求助? 3322345
关于积分的说明 10209855
捐赠科研通 3037696
什么是DOI,文献DOI怎么找? 1666837
邀请新用户注册赠送积分活动 797658
科研通“疑难数据库(出版商)”最低求助积分说明 758001