Strategies in Electrospun Polymer and Hybrid Scaffolds for Enhanced Cell Integration and Vascularization for Bone Tissue Engineering and Organoids

生物加工 脚手架 组织工程 再生医学 生物医学工程 骨组织 互连性 干细胞 再生(生物学) 纳米技术 材料科学 计算机科学 细胞生物学 工程类 生物 人工智能
作者
Martyna Polak,Joanna Karbowniczek,Urszula Stachewicz
出处
期刊:Wiley Interdisciplinary Reviews-nanomedicine and Nanobiotechnology [Wiley]
卷期号:16 (6) 被引量:3
标识
DOI:10.1002/wnan.2022
摘要

ABSTRACT Addressing the demand for bone substitutes, tissue engineering responds to the high prevalence of orthopedic surgeries worldwide and the limitations of conventional tissue reconstruction techniques. Materials, cells, and growth factors constitute the core elements in bone tissue engineering, influencing cellular behavior crucial for regenerative treatments. Scaffold design, including architectural features and porosity, significantly impacts cellular penetration, proliferation, differentiation, and vascularization. This review discusses the hierarchical structure of bone and the process of neovascularization in the context of biofabrication of scaffolds. We focus on the role of electrospinning and its modifications in scaffold fabrication to improve scaffold properties to enhance further tissue regeneration, for example, by boosting oxygen and nutrient delivery. We highlight how scaffold design impacts osteogenesis and the overall success of regenerative treatments by mimicking the extracellular matrix (ECM). Additionally, we explore the emerging field of bone organoids—self‐assembled, three‐dimensional (3D) structures derived from stem cells that replicate native bone tissue's architecture and functionality. While bone organoids hold immense potential for modeling bone diseases and facilitating regenerative treatments, their main limitation remains insufficient vascularization. Hence, we evaluate innovative strategies for pre‐vascularization and discuss the latest techniques for assessing and improving vascularization in both scaffolds and organoids presenting the most commonly used cell lines and biological models. Moreover, we analyze cutting‐edge techniques for assessing vascularization, evaluating their advantages and drawbacks to propose complex solutions. Finally, by integrating these approaches, we aim to advance the development of bioactive materials that promote successful bone regeneration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_5ZlN6L发布了新的文献求助10
刚刚
liahao完成签到,获得积分10
1秒前
邪恶西瓜皮完成签到,获得积分10
1秒前
1秒前
1秒前
月夕完成签到 ,获得积分10
1秒前
小金骑士发布了新的文献求助10
1秒前
呆小蓉发布了新的文献求助10
2秒前
3秒前
NexusExplorer应助舒心绝义采纳,获得30
3秒前
4秒前
情怀应助漂亮幻莲采纳,获得10
5秒前
wqxm发布了新的文献求助10
6秒前
Ava应助缓慢的博采纳,获得10
6秒前
新雨发布了新的文献求助10
6秒前
6秒前
FashionBoy应助LV采纳,获得10
6秒前
冰魂应助嗯嗯嗯采纳,获得10
7秒前
小蘑菇应助嗯嗯嗯采纳,获得10
7秒前
上官若男应助刘小倩儿采纳,获得10
7秒前
科目三应助嗯嗯嗯采纳,获得10
7秒前
潘qb发布了新的文献求助10
7秒前
CodeCraft应助嗯嗯嗯采纳,获得10
7秒前
Lucas应助嗯嗯嗯采纳,获得10
7秒前
所所应助嗯嗯嗯采纳,获得10
7秒前
李健应助嗯嗯嗯采纳,获得10
7秒前
zhou完成签到,获得积分10
7秒前
小二郎应助lishunzcqty采纳,获得10
8秒前
9秒前
小金骑士完成签到,获得积分10
9秒前
9秒前
搬砖小羊完成签到,获得积分10
9秒前
orixero应助勤奋尔曼采纳,获得10
9秒前
10秒前
wenhaw完成签到,获得积分10
10秒前
10秒前
思源应助jqian采纳,获得10
10秒前
xi完成签到 ,获得积分10
11秒前
zhaolei0519完成签到,获得积分10
11秒前
12秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Polymer handbook 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The CRISPR–Cas system in clinical strains of Acinetobacter baumannii: an in-silico analysis 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828812
求助须知:如何正确求助?哪些是违规求助? 3371182
关于积分的说明 10466905
捐赠科研通 3091094
什么是DOI,文献DOI怎么找? 1700738
邀请新用户注册赠送积分活动 817985
科研通“疑难数据库(出版商)”最低求助积分说明 770627