A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease

医学 冠状动脉疾病 心脏病学 内科学 疾病 放射科
作者
Théo Pezel,Solenn Toupin,Valérie Bousson,Kenza Hamzi,Thomas Hovasse,Thierry Lefévre,Bernard Chevalier,Thierry Unterseeh,Francesca Sanguineti,Stéphane Champagne,Hakim Benamer,Antoinette Neylon,Mariama Akodad,Tania Ah-Sing,Lounis Hamzi,Trecy Gonçalves,Antoine Léquipar,Emmanuel Gall,Alexandre Unger,Jean Guillaume Dillinger
出处
期刊:Radiology [Radiological Society of North America]
卷期号:314 (1)
标识
DOI:10.1148/radiol.233030
摘要

Background Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD. Materials and Methods This retrospective study included consecutive symptomatic patients without known CAD referred for CCTA between December 2008 and January 2020. Patients with obstructive CAD (at least one ≥50% stenosis at CCTA) underwent stress cardiac MRI for functional assessment. Eighteen clinical, two electrocardiogram, nine CCTA, and 12 cardiac MRI parameters were evaluated as inputs for the ML model, which involved automated feature selection with the least absolute shrinkage and selection operator algorithm and model building with an XGBoost algorithm. The primary outcome was MACE, defined as a composite of cardiovascular death and nonfatal myocardial infarction. External testing was performed using two independent datasets. Performance was compared between the ML model and existing scores and other approaches using the area under the receiver operating characteristic curve (AUC). Results Of 2210 patients who completed cardiac MRI, 2038 (mean age, 70 years ± 12 [SD]; 1091 [53.5%] female participants) completed follow-up (median duration, 7 years [IQR, 6-9 years]); 281 experienced MACE (13.8%). The ML model exhibited a higher AUC (0.86) for MACE prediction than the European Society of Cardiology score (0.55), QRISK3 score (0.60), Framingham Risk Score (0.50), segment involvement score (0.71), CCTA data alone (0.76), or stress cardiac MRI data alone (0.83) (P value range, <.001 to .004). The ML model also exhibited good performance in the two external validation datasets (AUC, 0.84 and 0.92). Conclusion An ML model including both CCTA and stress cardiac MRI data demonstrated better performance in predicting MACE than traditional methods and existing scores in patients with newly diagnosed CAD. © RSNA, 2025 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
林夏完成签到,获得积分10
2秒前
myjf发布了新的文献求助10
3秒前
木木三完成签到 ,获得积分0
4秒前
Fangfang发布了新的文献求助30
5秒前
5秒前
假面绅士发布了新的文献求助10
6秒前
7秒前
归尘应助cxwcn采纳,获得10
9秒前
科研通AI5应助cxwcn采纳,获得10
9秒前
医学林发布了新的文献求助10
11秒前
请问发布了新的文献求助10
11秒前
苑小苑完成签到,获得积分10
18秒前
myjf完成签到,获得积分10
18秒前
小广完成签到,获得积分10
21秒前
Bin关闭了Bin文献求助
22秒前
小二郎应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
ding应助科研通管家采纳,获得10
25秒前
英姑应助科研通管家采纳,获得10
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
ningwu完成签到,获得积分10
26秒前
晴子完成签到,获得积分10
27秒前
日常常完成签到,获得积分10
27秒前
安白发布了新的文献求助10
28秒前
科研通AI5应助CY采纳,获得10
30秒前
32秒前
我是老大应助美满的安蕾采纳,获得10
33秒前
34秒前
CucRuotThua完成签到,获得积分10
35秒前
不摇碧莲完成签到 ,获得积分10
35秒前
35秒前
大白完成签到 ,获得积分10
36秒前
聪明的冬瓜完成签到,获得积分10
38秒前
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777922
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214842
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315