已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Machine Learning Model Using Cardiac CT and MRI Data Predicts Cardiovascular Events in Obstructive Coronary Artery Disease

医学 冠状动脉疾病 心脏病学 内科学 疾病 放射科
作者
Théo Pezel,Solenn Toupin,Valérie Bousson,Kenza Hamzi,Thomas Hovasse,Thierry Lefévre,Bernard Chevalier,Thierry Unterseeh,Francesca Sanguineti,Stéphane Champagne,Hakim Benamer,Antoinette Neylon,Mariama Akodad,Tania Ah-Sing,Lounis Hamzi,Trecy Gonçalves,Antoine Léquipar,Emmanuel Gall,Alexandre Unger,Jean Guillaume Dillinger
出处
期刊:Radiology [Radiological Society of North America]
卷期号:314 (1)
标识
DOI:10.1148/radiol.233030
摘要

Background Multimodality imaging is essential for personalized prognostic stratification in suspected coronary artery disease (CAD). Machine learning (ML) methods can help address this complexity by incorporating a broader spectrum of variables. Purpose To investigate the performance of an ML model that uses both stress cardiac MRI and coronary CT angiography (CCTA) data to predict major adverse cardiovascular events (MACE) in patients with newly diagnosed CAD. Materials and Methods This retrospective study included consecutive symptomatic patients without known CAD referred for CCTA between December 2008 and January 2020. Patients with obstructive CAD (at least one ≥50% stenosis at CCTA) underwent stress cardiac MRI for functional assessment. Eighteen clinical, two electrocardiogram, nine CCTA, and 12 cardiac MRI parameters were evaluated as inputs for the ML model, which involved automated feature selection with the least absolute shrinkage and selection operator algorithm and model building with an XGBoost algorithm. The primary outcome was MACE, defined as a composite of cardiovascular death and nonfatal myocardial infarction. External testing was performed using two independent datasets. Performance was compared between the ML model and existing scores and other approaches using the area under the receiver operating characteristic curve (AUC). Results Of 2210 patients who completed cardiac MRI, 2038 (mean age, 70 years ± 12 [SD]; 1091 [53.5%] female participants) completed follow-up (median duration, 7 years [IQR, 6-9 years]); 281 experienced MACE (13.8%). The ML model exhibited a higher AUC (0.86) for MACE prediction than the European Society of Cardiology score (0.55), QRISK3 score (0.60), Framingham Risk Score (0.50), segment involvement score (0.71), CCTA data alone (0.76), or stress cardiac MRI data alone (0.83) (P value range, <.001 to .004). The ML model also exhibited good performance in the two external validation datasets (AUC, 0.84 and 0.92). Conclusion An ML model including both CCTA and stress cardiac MRI data demonstrated better performance in predicting MACE than traditional methods and existing scores in patients with newly diagnosed CAD. © RSNA, 2025 Supplemental material is available for this article.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Ganfei发布了新的文献求助10
刚刚
3秒前
艾查恩发布了新的文献求助10
5秒前
6秒前
6秒前
7秒前
8秒前
112233发布了新的文献求助10
10秒前
10秒前
11秒前
艾查恩完成签到,获得积分10
11秒前
关卉完成签到 ,获得积分10
11秒前
12秒前
lzk发布了新的文献求助10
13秒前
babyshark发布了新的文献求助10
16秒前
仁爱曼梅完成签到,获得积分10
16秒前
英俊的铭应助ShanTay采纳,获得10
16秒前
jbc关注了科研通微信公众号
20秒前
辛勤的谷云完成签到,获得积分10
22秒前
cy完成签到,获得积分10
22秒前
23秒前
24秒前
28秒前
田様应助科研小风采纳,获得10
28秒前
ShanTay发布了新的文献求助10
30秒前
ccc发布了新的文献求助10
30秒前
32秒前
33秒前
34秒前
zzz完成签到 ,获得积分10
35秒前
38秒前
40秒前
ShanTay完成签到,获得积分10
44秒前
44秒前
alfabatic完成签到,获得积分10
48秒前
天天快乐应助112233采纳,获得10
49秒前
ding应助科研通管家采纳,获得10
50秒前
wanci应助科研通管家采纳,获得20
50秒前
小二郎应助科研通管家采纳,获得10
50秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Impact of water dispenser establishment on drinking water availability and health status of peri-urban community 560
Implantable Technologies 500
Theories of Human Development 400
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3919772
求助须知:如何正确求助?哪些是违规求助? 3464684
关于积分的说明 10934746
捐赠科研通 3193020
什么是DOI,文献DOI怎么找? 1764461
邀请新用户注册赠送积分活动 854895
科研通“疑难数据库(出版商)”最低求助积分说明 794487