Automatic Electrical Wiring Inspection with Advanced Computer Vision Models

计算机科学 计算机视觉 人工智能 计算机图形学(图像) 工程制图 工程类
作者
Gabriele Valvano,Alessandro Rossi,Gianluca Caridi,G. Vanzo,Antonio Politano,Giovanni De Magistris,Lorenzo Salusti
标识
DOI:10.2118/222543-ms
摘要

Abstract Safety and reliability are paramount in energy industries. In this context, guaranteeing precise electrical wiring connections within terminal blocks is crucial for maintaining quality standards and enabling efficient remote support for on-site installations. Unfortunately, the current wiring quality checks are time-consuming and repetitive, and they are prone to human errors. This situation has led to an increasing interest in leveraging the capabilities of Artificial Intelligence (AI) to expedite the inspection process. AI assistants can either help in or completely automate the tedious checking operations, thereby enhancing operational efficiency. In this work, we introduce a novel approach that can be used to automatically verify the correctness of wiring connections to a terminal block. Our proposed methodology consists of a series of sequential operations, each contributing to the overall effectiveness of the system. First, we use an instance segmentation model to identify and isolate the connections between PINs and wires on a terminal block image. Then, we use text detection and recognition models to translate the pixels into an alphanumeric string. Lastly, we parse the obtained strings and compare results with the expected wiring connections in a reference database. Our proposed approach is not only simple and modular but also highly effective. It only requires a camera and a mobile device, and it swiftly generates a comprehensive report about the wire connections that are under inspection. This method is not only fast, but it also demonstrates promising performance levels (e.g. detecting connections with Precision and Recall > 96%), thereby confirming the potential of AI-based systems in revolutionizing the inspection process. With our work, we underscore the potential of AI-based systems in advancing traditional processes and setting new standards for efficiency and accuracy in the energy sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
wanci应助科研通管家采纳,获得10
1秒前
1秒前
Frank应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
打打应助asqw采纳,获得10
1秒前
漂泊发布了新的文献求助20
1秒前
2秒前
2秒前
搜集达人应助科研通管家采纳,获得10
2秒前
suuu发布了新的文献求助10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
JamesPei应助科研通管家采纳,获得10
2秒前
2秒前
3秒前
3秒前
英姑应助科研通管家采纳,获得10
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
nazi发布了新的文献求助10
3秒前
Luhh发布了新的文献求助10
3秒前
3秒前
60发布了新的文献求助10
3秒前
3秒前
4秒前
完美的向真完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
xu发布了新的文献求助10
4秒前
4秒前
充电宝应助干净荆采纳,获得10
5秒前
斯文败类应助慕迎蕾采纳,获得10
5秒前
咚咚发布了新的文献求助10
6秒前
444发布了新的文献求助30
6秒前
6秒前
Genmii完成签到,获得积分10
6秒前
3333橙发布了新的文献求助10
6秒前
嘚嘚发布了新的文献求助10
6秒前
小蘑菇应助积极的天问采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430202
求助须知:如何正确求助?哪些是违规求助? 4543438
关于积分的说明 14187210
捐赠科研通 4461576
什么是DOI,文献DOI怎么找? 2446244
邀请新用户注册赠送积分活动 1437490
关于科研通互助平台的介绍 1414381