Enhancing predictive capabilities in data-driven dynamical modeling with automatic differentiation: Koopman and neural ODE approaches

动态模态分解 可见的 颂歌 常微分方程 吸引子 状态空间 动力系统理论 操作员(生物学) 自动微分 动力系统(定义) 计算机科学 代表(政治) 数学 应用数学 微分方程 算法 计算 数学分析 物理 机器学习 抑制因子 法学 化学 生物化学 量子力学 政治学 转录因子 统计 政治 基因
作者
C. R. Constante-Amores,Alec J. Linot,Michael D. Graham
出处
期刊:Chaos [American Institute of Physics]
卷期号:34 (4)
标识
DOI:10.1063/5.0180415
摘要

Data-driven approximations of the Koopman operator are promising for predicting the time evolution of systems characterized by complex dynamics. Among these methods, the approach known as extended dynamic mode decomposition with dictionary learning (EDMD-DL) has garnered significant attention. Here, we present a modification of EDMD-DL that concurrently determines both the dictionary of observables and the corresponding approximation of the Koopman operator. This innovation leverages automatic differentiation to facilitate gradient descent computations through the pseudoinverse. We also address the performance of several alternative methodologies. We assess a “pure” Koopman approach, which involves the direct time-integration of a linear, high-dimensional system governing the dynamics within the space of observables. Additionally, we explore a modified approach where the system alternates between spaces of states and observables at each time step—this approach no longer satisfies the linearity of the true Koopman operator representation. For further comparisons, we also apply a state-space approach (neural ordinary differential equations). We consider systems encompassing two- and three-dimensional ordinary differential equation systems featuring steady, oscillatory, and chaotic attractors, as well as partial differential equations exhibiting increasingly complex and intricate behaviors. Our framework significantly outperforms EDMD-DL. Furthermore, the state-space approach offers superior performance compared to the “pure” Koopman approach where the entire time evolution occurs in the space of observables. When the temporal evolution of the Koopman approach alternates between states and observables at each time step, however, its predictions become comparable to those of the state-space approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
zizi发布了新的文献求助10
1秒前
文艺代灵发布了新的文献求助10
3秒前
科研通AI5应助zhanyuji采纳,获得10
3秒前
张明浪发布了新的文献求助10
4秒前
科研通AI5应助张张小白采纳,获得100
5秒前
5秒前
lq66a6发布了新的文献求助10
5秒前
领导范儿应助Nzoth采纳,获得10
5秒前
LZY完成签到,获得积分10
6秒前
jackycas发布了新的文献求助10
7秒前
耽溺关注了科研通微信公众号
8秒前
战战完成签到,获得积分10
8秒前
9秒前
张明浪完成签到,获得积分10
9秒前
9秒前
科研通AI5应助逝月采纳,获得10
10秒前
12秒前
gzy关注了科研通微信公众号
12秒前
NexusExplorer应助光头强采纳,获得10
12秒前
西梅完成签到,获得积分20
13秒前
黑妹发布了新的文献求助10
15秒前
MchemG应助菠萝蜜采纳,获得10
15秒前
Wency发布了新的文献求助30
15秒前
15秒前
田様应助KK采纳,获得10
16秒前
16秒前
16秒前
han完成签到 ,获得积分10
17秒前
17秒前
cloudy发布了新的文献求助10
17秒前
傻傻的夜柳完成签到 ,获得积分20
20秒前
三个哈卡发布了新的文献求助10
21秒前
zhanyuji发布了新的文献求助10
22秒前
Skuld应助玖玖采纳,获得10
22秒前
斯文冷亦完成签到 ,获得积分10
22秒前
sunhuaqiang发布了新的文献求助10
22秒前
逝月发布了新的文献求助10
22秒前
cloudy完成签到,获得积分10
23秒前
Wency完成签到,获得积分10
25秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Functional Polyimide Dielectrics: Structure, Properties, and Applications 450
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397