Automated quality control of T1-weighted brain MRI scans for clinical research: methods comparison and design of a quality prediction classifier

计算机科学 目视检查 扫描仪 神经影像学 分类器(UML) 人工智能 图像质量 可靠性(半导体) 数据挖掘 质量(理念) 机器学习 模式识别(心理学) 医学 认识论 精神科 图像(数学) 功率(物理) 哲学 物理 量子力学
作者
Gaurav Bhalerao,Grace Gillis,M Dembélé,Sana Suri,Klaus P. Ebmeier,Johannes Klein,Joshua Shulman,Clare E. Mackay,Ludovica Griffanti
标识
DOI:10.1101/2024.04.12.24305603
摘要

Abstract Introduction T1-weighted MRI is widely used in clinical neuroimaging for studying brain structure and its changes, including those related to neurodegenerative diseases, and as anatomical reference for analysing other modalities. Ensuring high-quality T1-weighted scans is vital as image quality affects reliability of outcome measures. However, visual inspection can be subjective and time-consuming, especially with large datasets. The effectiveness of automated quality control (QC) tools for clinical cohorts remains uncertain. In this study, we used T1w scans from elderly participants within ageing and clinical populations to test the accuracy of existing QC tools with respect to visual QC and to establish a new quality prediction framework for clinical research use. Methods Four datasets acquired from multiple scanners and sites were used ( N = 2438, 11 sites, 39 scanner manufacturer models, 3 field strengths – 1.5T, 3T, 2.9T, patients and controls, average age 71 ± 8 years). All structural T1w scans were processed with two standard automated QC pipelines (MRIQC and CAT12). The agreement of the accept-reject ratings was compared between the automated pipelines and with visual QC. We then designed a quality prediction framework that combines the QC measures from the existing automated tools and is trained on clinical datasets. We tested the classifier performance using cross-validation on data from all sites together, also examining the performance across diagnostic groups. We then tested the generalisability of our approach when leaving one site out and explored how well our approach generalises to data from a different scanner manufacturer and/or field strength from those used for training. Results Our results show significant agreement between automated QC tools and visual QC (Kappa=0.30 with MRIQC predictions; Kappa=0.28 with CAT12’s rating) when considering the entire dataset, but the agreement was highly variable across datasets. Our proposed robust undersampling boost (RUS) classifier achieved 87.7% balanced accuracy on the test data combined from different sites (with 86.6% and 88.3% balanced accuracy on scans from patients and controls respectively). This classifier was also found to be generalisable on different combinations of training and test datasets (leave-one-site-out = 78.2% average balanced accuracy; exploratory models = 77.7% average balanced accuracy). Conclusion While existing QC tools may not be robustly applicable to datasets comprised of older adults who have a higher rate of atrophy, they produce quality metrics that can be leveraged to train a more robust quality control classifiers for ageing and clinical cohorts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今天做实验了吗完成签到,获得积分10
刚刚
爆米花应助开整吧采纳,获得10
1秒前
1秒前
上官若男应助JJJ采纳,获得10
1秒前
勤恳八宝粥完成签到 ,获得积分10
1秒前
仙人球发布了新的文献求助10
1秒前
源格格发布了新的文献求助20
1秒前
Ailash发布了新的文献求助10
2秒前
火星上稀完成签到 ,获得积分10
2秒前
floating完成签到 ,获得积分10
2秒前
科研通AI2S应助七yy采纳,获得10
3秒前
活泼的寒安完成签到 ,获得积分10
3秒前
传奇3应助猪猪hero采纳,获得10
3秒前
3秒前
3秒前
CXC完成签到,获得积分10
3秒前
顾矜应助rjj001022采纳,获得10
4秒前
4秒前
科研通AI2S应助孟辰凡采纳,获得10
4秒前
4秒前
爱吃米线发布了新的文献求助10
4秒前
OhoOu发布了新的文献求助10
4秒前
5秒前
迪卢克完成签到,获得积分10
5秒前
5秒前
12等等发布了新的文献求助20
6秒前
6秒前
asdfzxcv应助奋斗的小彭采纳,获得10
7秒前
jjj发布了新的文献求助10
7秒前
7秒前
上官若男应助Cu采纳,获得10
7秒前
小5完成签到,获得积分10
8秒前
孙朱珠发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
孙朱珠发布了新的文献求助10
9秒前
共享精神应助一区top采纳,获得10
10秒前
钮祜禄小八完成签到,获得积分10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662021
求助须知:如何正确求助?哪些是违规求助? 4840532
关于积分的说明 15098074
捐赠科研通 4820518
什么是DOI,文献DOI怎么找? 2580000
邀请新用户注册赠送积分活动 1534212
关于科研通互助平台的介绍 1492878