Optimal operation of multi-agent electricity-heat-hydrogen sharing in integrated energy system based on Nash bargaining

讨价还价问题 碳排放税 数据库事务 计算机科学 纳什均衡 数学优化 微观经济学 经济 工程类 温室气体 电气工程 数学 生态学 生物 程序设计语言
作者
Jianyong Ding,Ciwei Gao,Meng Song,Xingyu Yan,Tao Chen
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier]
卷期号:148: 108930-108930 被引量:55
标识
DOI:10.1016/j.ijepes.2022.108930
摘要

The P2P transaction mode has significant potential in improving energy utilization, increasing economic efficiency, and promoting low carbon operation of the system. With the development of integrated energy system, the coupling between multi-energy systems is continuously strengthened, and the study of multi-energy P2P transactions is of great significance. Considering the characteristic that natural gas can blend with hydrogen, this paper proposes a multi-agent electricity-heat-hydrogen trading model by taking hydrogen produced on the load side as a P2P transaction object. Based on Nash bargaining theory, the multi-energy transactions model is equivalent to a cooperative game model. Then, the Nash bargaining model is transformed into two continuous subproblems of minimizing operating cost and maximizing transaction payment. The optimal cost of each agent operating independently is used as the negotiation rupture point, and the alternating direction multiplier method is used for sequential solution to obtain the multi-energy trading power and trading price, respectively. Finally, the effectiveness of the proposed method is verified by using the distribution network IEEE 33-bus and natural gas 11 node systems. The results show that the revenue of subject 1 is increased by 11.9%, and the operating costs of the other subjects are reduced by 3.4%, 2.7% and 3.1%, respectively. The overall carbon tax cost of the system is reduced by 1 196.59 CNY, which can effectively reduce the carbon emission of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助甜美野牛采纳,获得10
1秒前
田様应助kkk采纳,获得10
1秒前
Lcx完成签到 ,获得积分10
1秒前
先生完成签到,获得积分10
2秒前
奋斗青年完成签到,获得积分10
2秒前
无花果应助冥土采纳,获得10
2秒前
2秒前
爆米花应助水果采纳,获得10
2秒前
jason完成签到,获得积分10
3秒前
3秒前
linlinshine完成签到,获得积分10
3秒前
李健应助liangliu采纳,获得10
4秒前
一一应助清风采纳,获得10
4秒前
Owen应助执着从灵采纳,获得10
4秒前
4秒前
站岗小狗完成签到 ,获得积分10
5秒前
成就的念双完成签到,获得积分10
5秒前
彭于晏应助微眠采纳,获得10
6秒前
6秒前
6秒前
jason发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
echogj完成签到,获得积分10
7秒前
GQ发布了新的文献求助10
8秒前
还有跟发布了新的文献求助20
8秒前
活泼溪流完成签到,获得积分10
8秒前
CipherSage应助胖圈儿采纳,获得10
10秒前
王闪闪发布了新的文献求助10
10秒前
10秒前
今后应助yikeyaowanzi采纳,获得10
10秒前
无敌OUT曼完成签到,获得积分10
11秒前
11秒前
橙汁完成签到,获得积分10
11秒前
无花果应助刘凯采纳,获得10
11秒前
11秒前
11秒前
大眼睛土豆完成签到,获得积分10
11秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Problem based learning 1000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5388481
求助须知:如何正确求助?哪些是违规求助? 4510609
关于积分的说明 14035848
捐赠科研通 4421354
什么是DOI,文献DOI怎么找? 2428772
邀请新用户注册赠送积分活动 1421347
关于科研通互助平台的介绍 1400559