Predicting Intensive Care Delirium with Machine Learning: Model Development and External Validation

谵妄 医学 检查表 重症监护室 接收机工作特性 急诊医学 重症监护 混乱 重症监护医学 内科学 心理学 精神分析 认知心理学
作者
Kirby Gong,Ryan Lu,Teya S. Bergamaschi,Akaash Sanyal,Joanna Guo,Han Kim,Hieu Nguyen,Joseph L. Greenstein,Raimond L. Winslow,Robert D. Stevens
出处
期刊:Anesthesiology [Lippincott Williams & Wilkins]
卷期号:138 (3): 299-311 被引量:32
标识
DOI:10.1097/aln.0000000000004478
摘要

Background Delirium poses significant risks to patients, but countermeasures can be taken to mitigate negative outcomes. Accurately forecasting delirium in intensive care unit (ICU) patients could guide proactive intervention. Our primary objective was to predict ICU delirium by applying machine learning to clinical and physiologic data routinely collected in electronic health records. Methods Two prediction models were trained and tested using a multicenter database (years of data collection 2014 to 2015), and externally validated on two single-center databases (2001 to 2012 and 2008 to 2019). The primary outcome variable was delirium defined as a positive Confusion Assessment Method for the ICU screen, or an Intensive Care Delirium Screening Checklist of 4 or greater. The first model, named “24-hour model,” used data from the 24 h after ICU admission to predict delirium any time afterward. The second model designated “dynamic model,” predicted the onset of delirium up to 12 h in advance. Model performance was compared with a widely cited reference model. Results For the 24-h model, delirium was identified in 2,536 of 18,305 (13.9%), 768 of 5,299 (14.5%), and 5,955 of 36,194 (11.9%) of patient stays, respectively, in the development sample and two validation samples. For the 12-h lead time dynamic model, delirium was identified in 3,791 of 22,234 (17.0%), 994 of 6,166 (16.1%), and 5,955 of 28,440 (20.9%) patient stays, respectively. Mean area under the receiver operating characteristics curve (AUC) (95% CI) for the first 24-h model was 0.785 (0.769 to 0.801), significantly higher than the modified reference model with AUC of 0.730 (0.704 to 0.757). The dynamic model had a mean AUC of 0.845 (0.831 to 0.859) when predicting delirium 12 h in advance. Calibration was similar in both models (mean Brier Score [95% CI] 0.102 [0.097 to 0.108] and 0.111 [0.106 to 0.116]). Model discrimination and calibration were maintained when tested on the validation datasets. Conclusions Machine learning models trained with routinely collected electronic health record data accurately predict ICU delirium, supporting dynamic time-sensitive forecasting. Editor’s Perspective What We Already Know about This Topic What This Manuscript Tells Us That Is New
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邵亚旭发布了新的文献求助20
刚刚
古生菌完成签到 ,获得积分10
1秒前
科研yu完成签到,获得积分10
1秒前
快来吃甜瓜完成签到,获得积分20
2秒前
深情的黎云完成签到 ,获得积分10
2秒前
rong完成签到,获得积分10
4秒前
mito完成签到,获得积分10
5秒前
情怀应助清修采纳,获得10
7秒前
爱听歌宝马完成签到 ,获得积分10
7秒前
郭丹丹完成签到 ,获得积分10
8秒前
多余完成签到,获得积分10
8秒前
ghn123456789完成签到,获得积分10
9秒前
xin完成签到,获得积分10
10秒前
11秒前
11秒前
秋天完成签到,获得积分10
13秒前
ky小白白完成签到 ,获得积分10
14秒前
雍不斜完成签到,获得积分10
14秒前
唠叨的元槐完成签到,获得积分10
15秒前
Chengwang完成签到,获得积分10
15秒前
yy完成签到,获得积分10
16秒前
贪玩岱周完成签到,获得积分10
16秒前
赵怼怼发布了新的文献求助10
16秒前
鑫酱完成签到,获得积分10
16秒前
欣喜代秋发布了新的文献求助10
17秒前
盲目逛恋完成签到,获得积分10
17秒前
17秒前
KSDalton完成签到,获得积分10
17秒前
lllllllllllllll完成签到,获得积分10
17秒前
liangchaoyang完成签到 ,获得积分20
17秒前
四大天王看电势完成签到,获得积分10
18秒前
欣欣子完成签到 ,获得积分10
18秒前
京城世界发布了新的文献求助10
18秒前
d_fishier完成签到 ,获得积分10
19秒前
enen发布了新的文献求助10
20秒前
欣喜代秋完成签到,获得积分10
22秒前
guangyu发布了新的文献求助10
22秒前
23秒前
JFP完成签到,获得积分10
23秒前
JIECHENG完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4696379
求助须知:如何正确求助?哪些是违规求助? 4066271
关于积分的说明 12569884
捐赠科研通 3765408
什么是DOI,文献DOI怎么找? 2079568
邀请新用户注册赠送积分活动 1107843
科研通“疑难数据库(出版商)”最低求助积分说明 986126