Predicting Intensive Care Delirium with Machine Learning: Model Development and External Validation

谵妄 医学 检查表 重症监护室 接收机工作特性 急诊医学 重症监护 混乱 重症监护医学 内科学 心理学 精神分析 认知心理学
作者
Kirby Gong,Ryan Lu,Teya S. Bergamaschi,Akaash Sanyal,Joanna Guo,Han Kim,Hieu Nguyen,Joseph L. Greenstein,Raimond L. Winslow,Robert D. Stevens
出处
期刊:Anesthesiology [Lippincott Williams & Wilkins]
卷期号:138 (3): 299-311 被引量:24
标识
DOI:10.1097/aln.0000000000004478
摘要

Background Delirium poses significant risks to patients, but countermeasures can be taken to mitigate negative outcomes. Accurately forecasting delirium in intensive care unit (ICU) patients could guide proactive intervention. Our primary objective was to predict ICU delirium by applying machine learning to clinical and physiologic data routinely collected in electronic health records. Methods Two prediction models were trained and tested using a multicenter database (years of data collection 2014 to 2015), and externally validated on two single-center databases (2001 to 2012 and 2008 to 2019). The primary outcome variable was delirium defined as a positive Confusion Assessment Method for the ICU screen, or an Intensive Care Delirium Screening Checklist of 4 or greater. The first model, named “24-hour model,” used data from the 24 h after ICU admission to predict delirium any time afterward. The second model designated “dynamic model,” predicted the onset of delirium up to 12 h in advance. Model performance was compared with a widely cited reference model. Results For the 24-h model, delirium was identified in 2,536 of 18,305 (13.9%), 768 of 5,299 (14.5%), and 5,955 of 36,194 (11.9%) of patient stays, respectively, in the development sample and two validation samples. For the 12-h lead time dynamic model, delirium was identified in 3,791 of 22,234 (17.0%), 994 of 6,166 (16.1%), and 5,955 of 28,440 (20.9%) patient stays, respectively. Mean area under the receiver operating characteristics curve (AUC) (95% CI) for the first 24-h model was 0.785 (0.769 to 0.801), significantly higher than the modified reference model with AUC of 0.730 (0.704 to 0.757). The dynamic model had a mean AUC of 0.845 (0.831 to 0.859) when predicting delirium 12 h in advance. Calibration was similar in both models (mean Brier Score [95% CI] 0.102 [0.097 to 0.108] and 0.111 [0.106 to 0.116]). Model discrimination and calibration were maintained when tested on the validation datasets. Conclusions Machine learning models trained with routinely collected electronic health record data accurately predict ICU delirium, supporting dynamic time-sensitive forecasting. Editor’s Perspective What We Already Know about This Topic What This Manuscript Tells Us That Is New
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xx发布了新的文献求助10
1秒前
2秒前
酷波er应助糊涂的剑采纳,获得10
3秒前
5秒前
Ava应助Q1n采纳,获得10
8秒前
甜蜜唯雪发布了新的文献求助10
10秒前
SUNNY完成签到 ,获得积分10
12秒前
糊涂的剑完成签到,获得积分10
13秒前
香妃完成签到,获得积分10
15秒前
xx完成签到,获得积分20
17秒前
谨慎雪碧完成签到 ,获得积分10
18秒前
开心的帽子完成签到,获得积分10
20秒前
23秒前
24秒前
彭于晏应助不听话的番茄采纳,获得10
27秒前
科研通AI5应助帅气的祥采纳,获得10
28秒前
jinyu发布了新的文献求助10
29秒前
土拨鼠发布了新的文献求助10
30秒前
yupeijin完成签到,获得积分10
35秒前
科研通AI5应助顺利代曼采纳,获得10
35秒前
35秒前
小慧完成签到,获得积分10
37秒前
领导范儿应助大胆秋灵采纳,获得10
39秒前
丘比特应助jinyu采纳,获得10
39秒前
帅气的祥发布了新的文献求助10
40秒前
李爱国应助一个小胖子采纳,获得10
41秒前
ORANGE完成签到,获得积分10
42秒前
43秒前
45秒前
夏雪完成签到 ,获得积分10
46秒前
sujinyu发布了新的文献求助10
49秒前
51秒前
53秒前
54秒前
fsznc1完成签到 ,获得积分0
54秒前
顺利代曼发布了新的文献求助10
55秒前
李爱国应助帅气的祥采纳,获得10
55秒前
yang完成签到,获得积分20
56秒前
xxx发布了新的文献求助10
56秒前
贝贝发布了新的文献求助10
57秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778382
求助须知:如何正确求助?哪些是违规求助? 3324102
关于积分的说明 10217105
捐赠科研通 3039323
什么是DOI,文献DOI怎么找? 1667963
邀请新用户注册赠送积分活动 798447
科研通“疑难数据库(出版商)”最低求助积分说明 758385