Contrastive Learning of Handwritten Signature Representations for Writer-Independent Verification

签名(拓扑) 计算机科学 特征向量 班级(哲学) 任务(项目管理) 人工智能 模式识别(心理学) 转化(遗传学) 特征(语言学) 自然语言处理 空格(标点符号) 向量空间 数学 生物化学 基因 操作系统 哲学 几何学 经济 化学 管理 语言学
作者
Talles Brito,Victor L. F. Souza,Adriano L. I. Oliveira,Rafael M. O. Cruz,Robert Sabourin
标识
DOI:10.1109/ijcnn55064.2022.9892428
摘要

In writer-independent verification systems, a single model is trained for all users of the system using dissimilarity vectors obtained through a dichotomy transformation that converts a multi-class problem into a 2-class problem comprising: (i) the intra-class dissimilarity vectors computed from samples of the same user, (ii) the inter-class dissimilarity vectors computed from samples of different users. When mapping handwritten signature representations, it is desired to obtain well-separated dense clusters of signature representations for each user, in such a way that transformed intra-class dissimilarity vectors tend to be separated from the inter-class dissimilarity vectors. Moreover, since skilled forgeries resemble reference signatures, it is also desired to obtain skilled forgery dissimilarity vectors that are further away from the region of the intra-class dissimilarity vectors. In this work, it is hypothesized that an improved dissimilarity space can be achieved through a multi-task framework for learning handwritten signature feature representations based on deep contrastive learning. The proposed framework is composed of two objective-specific tasks; it does not use skilled forgeries for training. The first task aims to map signature examples of a given user in a dense cluster, while linearly separating the signature representations of different users. The second task aims to adjust forgery representations by adopting a contrastive loss with the ability to perform hard negative mining. Hard negatives are similar examples but from different classes that can be seen as artificially generated skilled forgeries for training. In a writer-independent verification approach, the model obtained with the proposed framework is evaluated in terms of the equal error rate on GPDS-300, CEDAR and MCYT-75 datasets. Experiments demonstrated a statistically significant improvement in signature verification compared to the state-of-the-art SigNet feature extraction method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
登山人完成签到,获得积分10
1秒前
热情路人完成签到,获得积分10
1秒前
2秒前
共享精神应助枯木采纳,获得10
3秒前
SYLH应助无情向梦采纳,获得10
3秒前
4秒前
杨。。完成签到 ,获得积分10
5秒前
研友_VZG7GZ应助nanfeng采纳,获得10
5秒前
FashionBoy应助北北北采纳,获得10
5秒前
5秒前
朱问安发布了新的文献求助10
6秒前
残幻应助云儿采纳,获得10
6秒前
动漫大师发布了新的文献求助10
7秒前
kd关注了科研通微信公众号
7秒前
一只五条悟完成签到,获得积分10
8秒前
好好学习完成签到,获得积分10
8秒前
9秒前
科研通AI5应助谨慎山彤采纳,获得10
9秒前
乐乐应助求求毕业拉~采纳,获得10
9秒前
科研通AI5应助BLESSING采纳,获得10
9秒前
是一个小朋友完成签到,获得积分10
9秒前
STA24完成签到,获得积分10
10秒前
yancong_219完成签到,获得积分10
10秒前
烟花应助研友_zLaJQn采纳,获得10
10秒前
wakeeeeeee完成签到,获得积分10
10秒前
10秒前
旧是完成签到 ,获得积分10
10秒前
SYLH应助VDC采纳,获得10
11秒前
手撕蛋发布了新的文献求助10
11秒前
Blank完成签到 ,获得积分10
11秒前
SRN发布了新的文献求助10
11秒前
科研助手6应助xiaoyi采纳,获得10
11秒前
内向的八宝粥完成签到,获得积分10
12秒前
12秒前
自觉半凡完成签到,获得积分10
13秒前
乐正成危完成签到 ,获得积分10
13秒前
务实小蘑菇完成签到,获得积分10
13秒前
14秒前
15秒前
1121241完成签到,获得积分10
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789101
求助须知:如何正确求助?哪些是违规求助? 3334213
关于积分的说明 10267996
捐赠科研通 3050485
什么是DOI,文献DOI怎么找? 1674041
邀请新用户注册赠送积分活动 802435
科研通“疑难数据库(出版商)”最低求助积分说明 760607