甘油醛3-磷酸脱氢酶
生物
细胞凋亡
细胞生物学
分子生物学
转染
葡萄孢霉素
氧化应激
细胞培养
生物化学
脱氢酶
信号转导
酶
蛋白激酶C
遗传学
作者
Zubin Dastoor,Jean-Luc Dreyer
标识
DOI:10.1242/jcs.114.9.1643
摘要
Recent studies indicating a role of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in apoptosis or oxidative stress has been reported. Using confocal laser-scanning microscopy, we have investigated the cellular distribution of GAPDH in central nervous system (CNS)-derived cells (neuroblastoma mNB41A3), in non-CNS derived cells (R6 fibroblast) and in an apoptosis-resistant Bcl2 overexpressing cell line (R6-Bcl2). Induction of apoptosis by staurosporine or MG132 and oxidative stress by H(2)O(2) or FeCN enhanced the nuclear translocation of endogenous GAPDH in all cell types, as detected by immunocytochemistry. In apoptotic cells, GAPDH expression is three times higher than in non-apoptotic cells. Consistent with a role for GAPDH in apoptosis, overexpression of a GAPDH-green fluorescent protein (GAPDH-GFP) hybrid increased nuclear import of GAPDH-GFP into transfected cells and the number of apoptotic cells, and made them more sensitive to agents that induce apoptosis. Bcl2 overexpression prevents nuclear translocation of GAPDH and apoptosis in untransfected cells, but not in transfected cells that overexpress GAPDH-GFP. Our observations indicate that nuclear translocation of GAPDH may play a role in apoptosis and oxidative stress, probably related to the activity of GAPDH as a DNA repair enzyme or as a nuclear carrier for pro-apoptotic molecules.
科研通智能强力驱动
Strongly Powered by AbleSci AI