精氨酸加压素受体2
肾源性尿崩症
横截
尿崩症
无义突变
加压素
遗传学
加压素受体
生物
水通道蛋白2
突变
高钠血症
终止密码子
外显子
基因
内科学
内分泌学
精氨酸
错义突变
医学
化学
氨基酸
工程类
有机化学
入口
钠
水道
机械工程
作者
Eliezer J. Holtzman,Lee F. Kolakowski,Ossie Geifman-Holtzman,Donalee O'brien,M Rasoulpour,Ann Guillot,Dennis A. Ausiello
出处
期刊:Journal of The American Society of Nephrology
日期:1994-08-01
卷期号:5 (2): 169-176
被引量:24
摘要
Congenital nephrogenic diabetes insipidus (CNDI) is a rare X-linked disorder in which the renal collecting duct is unresponsive to arginine vasopressin, and thus, the urine is consistently hypotonic to plasma. As a result, affected individuals are unable to concentrate urine and suffer from episodes of severe dehydration and hypernatremia. Recently, the association between arginine vasopressin V2 receptor gene mutations and CNDI has been demonstrated. In this report, two additional novel molecular defects of the arginine vasopressin V2 receptor gene in CNDI families are described. In one family, the affected individual demonstrated a G-->T transversion causing a nonsense mutation in codon 231. This mutation results in a glutamic acid becoming a termination codon, causing premature termination and truncation of the encoded receptor protein. This mutation causes a NciI site within the gene to be abolished and a BsaWI site to be created. In the second family, affected individuals showed a 28-basepair duplicating insertion in the very beginning of exon 2 down-stream of the splice acceptor site. It was hypothesized that an insertion mutagenesis mechanism involves the formation of a stem-loop structure within the newly synthesized DNA strand, followed by a slipped mispairing. This may be a general mechanism for the deletion or insertion of repeated sequences within the genome. Recent data show that G-protein-coupled receptors are susceptible to many different mutations that often result in the loss of function, causing a similar clinical phenotype.
科研通智能强力驱动
Strongly Powered by AbleSci AI