An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging

免疫衰老 炎症 衰老 健康衰老 医学 老年学 长寿 趋化因子 表型 免疫系统 免疫学 生物 内科学 遗传学 基因
作者
Nazish Sayed,Yingxiang Huang,Khiem Van Nguyen,Zuzana Krejciova-Rajaniemi,Anissa P. Grawe,Tianxiang Gao,Robert Tibshirani,Trevor Hastie,Ayelet Alpert,Lu Cui,Tatiana Kuznetsova,Yael Rosenberg‐Hasson,Rita Ostan,Daniela Monti,Benoit Lehallier,Shai S. Shen-Orr,Holden T. Maecker,Cornelia L. Dekker,Tony Wyss‐Coray,Claudio Franceschi
出处
期刊:Nature Aging 卷期号:1 (7): 598-615 被引量:415
标识
DOI:10.1038/s43587-021-00082-y
摘要

While many diseases of aging have been linked to the immunological system, immune metrics capable of identifying the most at-risk individuals are lacking. From the blood immunome of 1,001 individuals aged 8–96 years, we developed a deep-learning method based on patterns of systemic age-related inflammation. The resulting inflammatory clock of aging (iAge) tracked with multimorbidity, immunosenescence, frailty and cardiovascular aging, and is also associated with exceptional longevity in centenarians. The strongest contributor to iAge was the chemokine CXCL9, which was involved in cardiac aging, adverse cardiac remodeling and poor vascular function. Furthermore, aging endothelial cells in human and mice show loss of function, cellular senescence and hallmark phenotypes of arterial stiffness, all of which are reversed by silencing CXCL9. In conclusion, we identify a key role of CXCL9 in age-related chronic inflammation and derive a metric for multimorbidity that can be utilized for the early detection of age-related clinical phenotypes. From the blood immunome of 1,001 individuals aged 8–96 years, the authors used deep learning to develop an inflammatory clock of aging (iAge) that tracks with multimorbidity, immunosenescence, frailty and cardiovascular aging, and is also associated with exceptional longevity in centenarians. The main contributor to iAge is the chemokine CXCL9, which is shown to control endothelial cell senescence and function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
火星上的夏青完成签到,获得积分10
1秒前
1秒前
伯赏无极完成签到,获得积分10
2秒前
2秒前
老丫大侠完成签到 ,获得积分10
3秒前
今后应助颖火虫采纳,获得10
3秒前
3秒前
丁一发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
林娜琏发布了新的文献求助10
6秒前
Neonoes完成签到,获得积分10
6秒前
6秒前
日天的马铃薯完成签到,获得积分10
6秒前
sing完成签到,获得积分10
8秒前
8秒前
乐观的夏彤完成签到,获得积分20
8秒前
8秒前
白白发布了新的文献求助10
9秒前
幽默白竹发布了新的文献求助10
9秒前
pattzz完成签到 ,获得积分20
9秒前
9秒前
9秒前
田様应助WHUT-Batteries采纳,获得10
11秒前
arya完成签到,获得积分10
11秒前
Eternal芾夏完成签到,获得积分10
12秒前
wanci应助七七采纳,获得10
13秒前
李爱国应助gww采纳,获得10
13秒前
上官若男应助白白采纳,获得10
13秒前
老迟到的小蘑菇完成签到,获得积分10
14秒前
14秒前
小白小白完成签到,获得积分20
15秒前
zhang完成签到,获得积分10
15秒前
虚心的小熊猫完成签到,获得积分10
15秒前
16秒前
17秒前
第八维发布了新的文献求助10
17秒前
17秒前
浮游应助Ffffa采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4951099
求助须知:如何正确求助?哪些是违规求助? 4213924
关于积分的说明 13106181
捐赠科研通 3995679
什么是DOI,文献DOI怎么找? 2187014
邀请新用户注册赠送积分活动 1202236
关于科研通互助平台的介绍 1115447