Doc2vec-based link prediction approach using SAO structures: application to patent network

计算机科学 背景(考古学) 相似性(几何) 互联网 引用 链接(几何体) 领域(数学) 情报检索 数据挖掘 人工智能 万维网 数学 古生物学 计算机网络 纯数学 图像(数学) 生物
作者
Byungun Yoon,Songhee Kim,Sunhye Kim,Hyeonju Seol
出处
期刊:Scientometrics [Springer Nature (Netherlands)]
卷期号:127 (9): 5385-5414 被引量:17
标识
DOI:10.1007/s11192-021-04187-4
摘要

As the amount of documents has exploded in the Internet era, many researchers have tried to understand the relationships between documents and predict the links between similar but unconnected documents. However, existing link prediction techniques that use the predefined links of documents might provide incorrect results, because of the generic problem of citation analysis. Moreover, they may fail to reflect important contents of documents in the link prediction process. Thus, we propose a new link prediction approach that employs the Doc2vec algorithm, a document-embedding method, in order to predict potential links between documents, by reflecting the functional context of technological words. For this, first, we collected both citation information and documents of patents of interest, and generated a patent network by using the citation relationship between patents. Second, we identified unconnected links between nodes and transformed the patent document into document vectors, based on the Doc2vec algorithm. In particular, since patent documents include useful functions for solving technological problems, the proposed approach extracts subject-action-object (SAO) structures that we used to generate document vectors. Then, we calculated the similarity between patents in the unconnected links of a patent network, and could predict potential links by using the similarity. Third, we validated the results of the proposed approach by comparing them using the Adamic–Adar technique, one of the traditional link prediction techniques, and word vector-based link prediction. We applied the Doc2vec-based link prediction approach to a real case, the unmanned aerial vehicle (UAV) technology field. We found that the proposed approach makes better predictions performance than the Adamic–Adar technique and the word vector approach. Our results can help analyzers accurately forecast future relationships between nodes in a network, and give R&D managers insightful information on the future direction of technological development by using a patent network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
哈哈哈完成签到 ,获得积分10
刚刚
乐予完成签到,获得积分10
1秒前
研友_LMNjkn完成签到 ,获得积分10
3秒前
ShawnLyu应助bibgyueli采纳,获得10
4秒前
科研通AI5应助阿文采纳,获得20
6秒前
6秒前
8秒前
善良雅柏发布了新的文献求助10
10秒前
limof完成签到,获得积分10
11秒前
Mayer1234088完成签到,获得积分10
11秒前
害羞小虾米完成签到,获得积分10
11秒前
wangfang0228完成签到 ,获得积分10
12秒前
DODO完成签到,获得积分10
13秒前
Hezzzz完成签到,获得积分10
13秒前
limof发布了新的文献求助10
14秒前
Young完成签到,获得积分10
15秒前
所所应助DDDD采纳,获得30
15秒前
康康XY完成签到 ,获得积分10
17秒前
18秒前
19秒前
wly9399375发布了新的文献求助10
23秒前
您的慈父完成签到,获得积分20
23秒前
tianjiu发布了新的文献求助10
24秒前
Willy完成签到,获得积分10
24秒前
老西瓜完成签到,获得积分10
25秒前
梁筱筱完成签到 ,获得积分10
25秒前
344061512完成签到 ,获得积分10
28秒前
luna完成签到,获得积分10
30秒前
甜橙完成签到 ,获得积分10
30秒前
ding应助酷炫的鸡翅采纳,获得10
33秒前
xanthine完成签到,获得积分10
34秒前
cdercder应助史迪仔采纳,获得20
34秒前
36秒前
36秒前
Kenny完成签到,获得积分10
38秒前
40秒前
默默发布了新的文献求助10
41秒前
wu发布了新的文献求助10
43秒前
十三完成签到,获得积分10
43秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320