强化学习
标识符
计算机科学
控制理论(社会学)
国家(计算机科学)
汉密尔顿-雅各比-贝尔曼方程
多智能体系统
模糊逻辑
模糊控制系统
偏移量(计算机科学)
控制系统
控制(管理)
人工智能
最优控制
数学优化
数学
算法
工程类
程序设计语言
电气工程
作者
Wentai Shao,Yutao Chen,Jie Huang
标识
DOI:10.23919/ccc52363.2021.9549357
摘要
In this paper, a simplified reinforcement learning (RL) of identifier-actor-critic architecture is proposed to solve the formation problem of multiagent state-delay system. The dynamics of multi-agent systems includes the uncertainties and state delay, which is more practical in applications. In the multiagent system formation control, the system uncertainties are counteracted through the fuzzy logic system; the state delay is offset by applying a Lyapunov-Krasovskii functional. The updating laws of RL are derived from a simple equation, which is equivalent to the gradient of the HJB equation. Finally, a simulation example is given to demonstrate the satisfactory performance of the proposed method.
科研通智能强力驱动
Strongly Powered by AbleSci AI