控制理论(社会学)
容错
执行机构
控制器(灌溉)
李雅普诺夫函数
瞬态(计算机编程)
非线性系统
控制工程
计算机科学
Lyapunov稳定性
自适应控制
断层(地质)
人工神经网络
工程类
控制(管理)
分布式计算
人工智能
操作系统
物理
地质学
生物
地震学
量子力学
农学
作者
Pu Zhang,Huifeng Xue,Shan Gao,Xuan Zuo,Jialong Zhang
出处
期刊:IEEE Systems Journal
[Institute of Electrical and Electronics Engineers]
日期:2021-08-02
卷期号:16 (3): 3590-3601
被引量:21
标识
DOI:10.1109/jsyst.2021.3097503
摘要
Aiming at the uncertain parameters and transient instability of the system caused by the actuator fault of the multiagent system, this article adopts the radial basis function neural networks to approximate unknown nonlinear function. Then, a novel adaptive fault-tolerant controller is designed based on the combination back-stepping technology and dynamic surface technology to compensate the unknown nonlinear hybrid actuator faults, thereby improving the fault tolerance of the system. Furthermore, the designed controller can guarantee the transient stability of the system through finite-time theory and Lyapunov stability theory. Finally, the comparison of two simulation examples is given to verify the effectiveness of the designed controller, which provided an effective research idea for engineering practice.
科研通智能强力驱动
Strongly Powered by AbleSci AI