Aggregation Service for Federated Learning: An Efficient, Secure, and More Resilient Realization

计算机科学 联合学习 云计算 密文 分布式计算 加密 服务器 明文 人工智能 计算机网络 机器学习 操作系统
作者
Yifeng Zheng,Shangqi Lai,Yi Liu,Xingliang Yuan,Xun Yi,Cong Wang
出处
期刊:IEEE Transactions on Dependable and Secure Computing [IEEE Computer Society]
卷期号:20 (2): 988-1001 被引量:84
标识
DOI:10.1109/tdsc.2022.3146448
摘要

Federated learning has recently emerged as a paradigm promising the benefits of harnessing rich data from diverse sources to train high quality models, with the salient features that training datasets never leave local devices. Only model updates are locally computed and shared for aggregation to produce a global model. While federated learning greatly alleviates the privacy concerns as opposed to learning with centralized data, sharing model updates still poses privacy risks. In this paper, we present a system design which offers efficient protection of individual model updates throughout the learning procedure, allowing clients to only provide obscured model updates while a cloud server can still perform the aggregation. Our federated learning system first departs from prior works by supporting lightweight encryption and aggregation, and resilience against drop-out clients with no impact on their participation in future rounds. Meanwhile, prior work largely overlooks bandwidth efficiency optimization in the ciphertext domain and the support of security against an actively adversarial cloud server, which we also fully explore in this paper and provide effective and efficient mechanisms. Extensive experiments over several benchmark datasets (MNIST, CIFAR-10, and CelebA) show our system achieves accuracy comparable to the plaintext baseline, with practical performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阳光的无剑完成签到,获得积分20
刚刚
1秒前
1秒前
完美世界应助odell采纳,获得10
2秒前
小懒虫发布了新的文献求助10
3秒前
hello完成签到,获得积分10
3秒前
靓丽瓦驴完成签到,获得积分10
3秒前
4秒前
快乐冰夏完成签到,获得积分10
4秒前
wind发布了新的文献求助10
4秒前
希望天下0贩的0应助chi采纳,获得10
5秒前
5秒前
qq发布了新的文献求助10
6秒前
田様应助laopei2001采纳,获得10
7秒前
Arrebol完成签到,获得积分10
7秒前
7秒前
TERRY完成签到,获得积分10
7秒前
Ava应助xuan采纳,获得10
9秒前
9秒前
9秒前
10秒前
科研不通发布了新的文献求助10
10秒前
10秒前
11秒前
qianchimo完成签到 ,获得积分10
12秒前
马迦南发布了新的文献求助10
12秒前
sun发布了新的文献求助10
13秒前
13秒前
13秒前
RXwang发布了新的文献求助10
14秒前
卡酷关注了科研通微信公众号
14秒前
bkagyin应助Seiswan采纳,获得10
15秒前
15秒前
云遮月完成签到,获得积分10
15秒前
15秒前
沉静傲霜完成签到,获得积分10
16秒前
qiqi完成签到,获得积分10
16秒前
odell发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
Building Quantum Computers 500
近赤外発光材料の開発とOLEDの高性能化 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3869690
求助须知:如何正确求助?哪些是违规求助? 3411820
关于积分的说明 10676825
捐赠科研通 3136356
什么是DOI,文献DOI怎么找? 1730203
邀请新用户注册赠送积分活动 833806
科研通“疑难数据库(出版商)”最低求助积分说明 780946