Thermal conductivity of polydisperse hexagonal BN/polyimide composites: Iterative EMT model and machine learning based on first principles investigation

材料科学 热导率 复合材料 剥脱关节 氮化硼 热传导 热压 聚酰亚胺 石墨烯 纳米技术 图层(电子)
作者
Dongliang Ding,Minhao Zou,Xu Wang,Guangzhao Qin,Shiyu Zhang,Siew Yin Chan,Qingyong Meng,Zhen‐Guo Liu,Qiuyu Zhang,Yanhui Chen
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:437: 135438-135438 被引量:55
标识
DOI:10.1016/j.cej.2022.135438
摘要

Demand for thermal management materials (TMMs) with efficient in-plane heat dissipation has grown with the advancement of intelligent wireless communication equipment. Herein, polydisperse hexagonal boron nitride (ae-BN) in the range of micrometers to nanometers via aqueous-assisted exfoliation. First principles investigation revealed that ae-BN possess high intrinsic thermal conductivity. A series of ae-BN/PI composites were then fabricated through facile methods: vacuum-filtration and hot-pressing. The ae-BN/PI composites with 30 vol% ae-BN loading exhibited superior in-plane thermal conductivity (6.57 W/(m·K) compared to pristine h-BN/PI composite (3.92 W/(m·K)). SEM images and structural modeling of ae-BN/PI composites revealed that thermal conduction pathways constructed in the composites continuously increased with ae-BN content, attributing to an increased contact probability in composites with higher content of ae-BN. Reduction in thermal boundary resistance of ae-BN/PI composites was proved by our iterative EMT model. In-plane thermal conductivity of ae-BN/PI composites with different fillers’ contents at variable temperatures were predicted by machine learning technique, viz. artificial neural network (ANN) model. In brief, ae-BN/PI composites with high thermal conductivity, electrical insulation, thermal stability, and mechanical strength were successfully fabricated. The heat conduction mechanism of ae-BN/PI composites was investigated, serving as an important piece of puzzle for the advancement in TMMs of the advanced electronic devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
温暖眼神完成签到,获得积分10
刚刚
pp发布了新的文献求助10
4秒前
大模型应助PSY采纳,获得10
4秒前
Kimo发布了新的文献求助10
4秒前
xuan完成签到,获得积分10
4秒前
筱灬发布了新的文献求助10
5秒前
万能图书馆应助初一采纳,获得10
5秒前
英俊的铭应助GTL采纳,获得10
5秒前
666完成签到 ,获得积分10
6秒前
7秒前
10秒前
威武画板发布了新的文献求助10
12秒前
Orange应助厚朴1214采纳,获得10
16秒前
子凯发布了新的文献求助10
17秒前
圆圆完成签到 ,获得积分10
18秒前
云上人发布了新的文献求助10
18秒前
斯文败类应助zhzh0618采纳,获得10
19秒前
1ssd完成签到,获得积分10
20秒前
20秒前
20秒前
Ning完成签到,获得积分10
20秒前
隐形曼青应助BINGBING采纳,获得10
21秒前
zz完成签到,获得积分10
22秒前
jy完成签到,获得积分10
23秒前
小蘑菇应助1ssd采纳,获得10
24秒前
man发布了新的文献求助30
24秒前
迅速无敌发布了新的文献求助10
26秒前
科目三应助张大帅6666采纳,获得10
27秒前
28秒前
28秒前
浅浪应助xixilulixiu采纳,获得10
29秒前
rinki01完成签到,获得积分10
33秒前
Naomi-yu完成签到,获得积分10
33秒前
甲乙驾驭发布了新的文献求助10
34秒前
酷波er应助逍遥丸子采纳,获得10
35秒前
rinki01发布了新的文献求助10
37秒前
38秒前
39秒前
棒棒的红红完成签到,获得积分10
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 800
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III – Liver, Biliary Tract, and Pancreas, 3rd Edition 400
Elliptical Fiber Waveguides 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4170548
求助须知:如何正确求助?哪些是违规求助? 3706244
关于积分的说明 11694237
捐赠科研通 3392235
什么是DOI,文献DOI怎么找? 1860610
邀请新用户注册赠送积分活动 920451
科研通“疑难数据库(出版商)”最低求助积分说明 832674