亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the forecast accuracy of ECMWF 2-m air temperature using a historical dataset

环境科学 气象学 气候学 空气温度 遥感 地质学 地理
作者
Zhaolu Hou,Jianping Li,Lei Wang,Yazhou Zhang,Ting Liu
出处
期刊:Atmospheric Research [Elsevier]
卷期号:273: 106177-106177 被引量:6
标识
DOI:10.1016/j.atmosres.2022.106177
摘要

The 2-m air temperature (T2m) is an important meteorological variable and has been the focus of meteorological forecasting. Although the numerical weather model is an important means of forecasting, it typically presents forecasting errors that cannot be eliminated by improving the ability of the numerical model to reproduce the processes. Thus, a statistical correction of the forecast results is required. In this study, we applied the local dynamical analog (LDA) method to correct the operational T2m forecast product obtained from the European Centre for Medium-Range Weather Forecasts with the lead time of 24–240 h. To our knowledge, for the first time, we used spatially adjacent grids from high-resolution grid data as potential analog pools to compensate for the short duration of historical data. The T2m of weather forecasts in East Asia for December 2018 was improved by LDA correction with a small sample condition. Compared with ERA5 and station observation data, the results show that the root mean square error can be reduced by 2%–4% and the correlation coefficient can be increased by 1%–5% for different lead times, with the most distinct improvement effect for the medium-term forecast time. The Qinghai Tibet Plateau, Mongolia Plateau, and other areas, where the raw prediction error is relatively high, presented better performance than other regions. For a cold-wave process, we also demonstrate that the corrected results based on analogs present better forecasting skill performance than raw forecast results. The analog correction with the LDA method, which combines statistical and model dynamical techniques, is proposed to be integrated with other advanced operational models. The forecast skill of T2m was improved by a historical dataset, which may contribute to energy management and the construction industry. • Numerical weather model forecasting can be improved by use of historical datasets. • Spatially adjacent grids compensate for short time duration of historical data. • Use of local dynamical analog method can reduce RMSE by up to 4%. • Temporal correlation coefficient is improved by up to 5%. • The forecast accuracy of a Cold wave process is improved by the correction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小杭76应助yy采纳,获得10
1秒前
玩命的糖豆完成签到 ,获得积分10
9秒前
简让完成签到 ,获得积分10
15秒前
桐桐应助火星上的穆采纳,获得10
19秒前
化学课die表完成签到 ,获得积分10
28秒前
28秒前
饼饼完成签到,获得积分10
33秒前
小桃耶发布了新的文献求助10
36秒前
Reticent完成签到 ,获得积分10
39秒前
苗条的小蜜蜂完成签到 ,获得积分10
40秒前
AX完成签到,获得积分10
46秒前
55秒前
瘦瘦含巧完成签到 ,获得积分10
55秒前
zkx发布了新的文献求助10
59秒前
1分钟前
1分钟前
hrx6664发布了新的文献求助10
1分钟前
大佬完成签到 ,获得积分10
1分钟前
长安完成签到 ,获得积分10
1分钟前
你眼带笑完成签到 ,获得积分10
1分钟前
ccczzz完成签到,获得积分10
1分钟前
hrx6664完成签到,获得积分20
1分钟前
xstar完成签到 ,获得积分10
1分钟前
1分钟前
小李完成签到,获得积分20
1分钟前
lilili2060发布了新的文献求助10
1分钟前
Criminology34应助加菲丰丰采纳,获得10
1分钟前
科目三应助蛋挞好好吃采纳,获得10
1分钟前
1分钟前
霸气乐菱发布了新的文献求助10
1分钟前
苹果诗筠完成签到 ,获得积分10
1分钟前
闪光的flash完成签到 ,获得积分10
1分钟前
兜兜完成签到 ,获得积分10
1分钟前
NexusExplorer应助光亮的曼香采纳,获得10
1分钟前
头上有犄角bb完成签到 ,获得积分10
1分钟前
高伟杰完成签到,获得积分10
1分钟前
史前巨怪完成签到,获得积分10
1分钟前
季刘杰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5291069
求助须知:如何正确求助?哪些是违规求助? 4442222
关于积分的说明 13829543
捐赠科研通 4325186
什么是DOI,文献DOI怎么找? 2374028
邀请新用户注册赠送积分活动 1369382
关于科研通互助平台的介绍 1333523