Improving the forecast accuracy of ECMWF 2-m air temperature using a historical dataset

环境科学 气象学 气候学 空气温度 遥感 地质学 地理
作者
Zhaolu Hou,Jianping Li,Lei Wang,Yazhou Zhang,Ting Liu
出处
期刊:Atmospheric Research [Elsevier BV]
卷期号:273: 106177-106177 被引量:6
标识
DOI:10.1016/j.atmosres.2022.106177
摘要

The 2-m air temperature (T2m) is an important meteorological variable and has been the focus of meteorological forecasting. Although the numerical weather model is an important means of forecasting, it typically presents forecasting errors that cannot be eliminated by improving the ability of the numerical model to reproduce the processes. Thus, a statistical correction of the forecast results is required. In this study, we applied the local dynamical analog (LDA) method to correct the operational T2m forecast product obtained from the European Centre for Medium-Range Weather Forecasts with the lead time of 24–240 h. To our knowledge, for the first time, we used spatially adjacent grids from high-resolution grid data as potential analog pools to compensate for the short duration of historical data. The T2m of weather forecasts in East Asia for December 2018 was improved by LDA correction with a small sample condition. Compared with ERA5 and station observation data, the results show that the root mean square error can be reduced by 2%–4% and the correlation coefficient can be increased by 1%–5% for different lead times, with the most distinct improvement effect for the medium-term forecast time. The Qinghai Tibet Plateau, Mongolia Plateau, and other areas, where the raw prediction error is relatively high, presented better performance than other regions. For a cold-wave process, we also demonstrate that the corrected results based on analogs present better forecasting skill performance than raw forecast results. The analog correction with the LDA method, which combines statistical and model dynamical techniques, is proposed to be integrated with other advanced operational models. The forecast skill of T2m was improved by a historical dataset, which may contribute to energy management and the construction industry. • Numerical weather model forecasting can be improved by use of historical datasets. • Spatially adjacent grids compensate for short time duration of historical data. • Use of local dynamical analog method can reduce RMSE by up to 4%. • Temporal correlation coefficient is improved by up to 5%. • The forecast accuracy of a Cold wave process is improved by the correction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
3秒前
咪咪完成签到,获得积分10
4秒前
虚灵应助陈伟杰采纳,获得10
4秒前
小行星完成签到,获得积分10
5秒前
小太阳完成签到,获得积分10
6秒前
善学以致用应助咪咪采纳,获得10
6秒前
zimo完成签到,获得积分10
7秒前
無期发布了新的文献求助10
8秒前
香蕉觅云应助咸鱼想翻身采纳,获得30
8秒前
科研通AI2S应助DDDOG采纳,获得10
11秒前
12秒前
AJ完成签到 ,获得积分10
14秒前
15秒前
慕青应助羊羊采纳,获得10
17秒前
小七发布了新的文献求助10
20秒前
Sandy完成签到 ,获得积分10
22秒前
赘婿应助123123采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
25秒前
笨笨芯应助科研通管家采纳,获得10
25秒前
田様应助科研通管家采纳,获得10
25秒前
上官若男应助科研通管家采纳,获得10
25秒前
星辰大海应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
25秒前
科研通AI5应助AARON采纳,获得10
27秒前
lysixsixsix完成签到,获得积分10
28秒前
传统的天磊应助無期采纳,获得20
31秒前
34秒前
34秒前
34秒前
36秒前
37秒前
Liskiat2021发布了新的文献求助10
37秒前
sns八丘完成签到,获得积分10
37秒前
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761742
求助须知:如何正确求助?哪些是违规求助? 3305515
关于积分的说明 10134536
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658216
邀请新用户注册赠送积分活动 791974
科研通“疑难数据库(出版商)”最低求助积分说明 754751