Improving the forecast accuracy of ECMWF 2-m air temperature using a historical dataset

环境科学 气象学 气候学 空气温度 遥感 地质学 地理
作者
Zhaolu Hou,Jianping Li,Lei Wang,Yazhou Zhang,Ting Liu
出处
期刊:Atmospheric Research [Elsevier]
卷期号:273: 106177-106177 被引量:6
标识
DOI:10.1016/j.atmosres.2022.106177
摘要

The 2-m air temperature (T2m) is an important meteorological variable and has been the focus of meteorological forecasting. Although the numerical weather model is an important means of forecasting, it typically presents forecasting errors that cannot be eliminated by improving the ability of the numerical model to reproduce the processes. Thus, a statistical correction of the forecast results is required. In this study, we applied the local dynamical analog (LDA) method to correct the operational T2m forecast product obtained from the European Centre for Medium-Range Weather Forecasts with the lead time of 24–240 h. To our knowledge, for the first time, we used spatially adjacent grids from high-resolution grid data as potential analog pools to compensate for the short duration of historical data. The T2m of weather forecasts in East Asia for December 2018 was improved by LDA correction with a small sample condition. Compared with ERA5 and station observation data, the results show that the root mean square error can be reduced by 2%–4% and the correlation coefficient can be increased by 1%–5% for different lead times, with the most distinct improvement effect for the medium-term forecast time. The Qinghai Tibet Plateau, Mongolia Plateau, and other areas, where the raw prediction error is relatively high, presented better performance than other regions. For a cold-wave process, we also demonstrate that the corrected results based on analogs present better forecasting skill performance than raw forecast results. The analog correction with the LDA method, which combines statistical and model dynamical techniques, is proposed to be integrated with other advanced operational models. The forecast skill of T2m was improved by a historical dataset, which may contribute to energy management and the construction industry. • Numerical weather model forecasting can be improved by use of historical datasets. • Spatially adjacent grids compensate for short time duration of historical data. • Use of local dynamical analog method can reduce RMSE by up to 4%. • Temporal correlation coefficient is improved by up to 5%. • The forecast accuracy of a Cold wave process is improved by the correction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Lotus发布了新的文献求助10
1秒前
2秒前
仁爱仙人掌完成签到,获得积分10
4秒前
ywang发布了新的文献求助10
4秒前
6秒前
6秒前
6秒前
ewqw关注了科研通微信公众号
7秒前
曦小蕊完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
奋斗灵波发布了新的文献求助10
9秒前
药学牛马发布了新的文献求助10
9秒前
9秒前
科研通AI5应助WZ0904采纳,获得10
10秒前
叶未晞yi发布了新的文献求助10
11秒前
ipeakkka发布了新的文献求助10
12秒前
Jzhang应助迷人的映雁采纳,获得10
12秒前
12秒前
zzz完成签到,获得积分10
13秒前
13秒前
小安发布了新的文献求助10
13秒前
14秒前
叶未晞yi完成签到,获得积分10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得30
16秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
kilig应助科研通管家采纳,获得10
17秒前
17秒前
华仔应助科研通管家采纳,获得30
17秒前
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
博ge发布了新的文献求助10
19秒前
20秒前
葶儿发布了新的文献求助10
20秒前
hgcyp完成签到,获得积分10
25秒前
ysh完成签到,获得积分10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824