清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Predicting Invasiveness of Lung Adenocarcinoma at Chest CT with Deep Learning Ternary Classification Models

医学 腺癌 放射科 二元分类 人工智能 肺孤立结节 肺癌筛查 试验装置 癌症 计算机断层摄影术 内科学 计算机科学 支持向量机
作者
Zhengsong Pan,Ge Hu,Zhenchen Zhu,Weixiong Tan,Wei Han,Z.‐G. Zhou,Wei Song,Yizhou Yu,Lan Song,Zhengyu Jin
出处
期刊:Radiology [Radiological Society of North America]
卷期号:311 (1) 被引量:22
标识
DOI:10.1148/radiol.232057
摘要

Background Preoperative discrimination of preinvasive, minimally invasive, and invasive adenocarcinoma at CT informs clinical management decisions but may be challenging for classifying pure ground-glass nodules (pGGNs). Deep learning (DL) may improve ternary classification. Purpose To determine whether a strategy that includes an adjudication approach can enhance the performance of DL ternary classification models in predicting the invasiveness of adenocarcinoma at chest CT and maintain performance in classifying pGGNs. Materials and Methods In this retrospective study, six ternary models for classifying preinvasive, minimally invasive, and invasive adenocarcinoma were developed using a multicenter data set of lung nodules. The DL-based models were progressively modified through framework optimization, joint learning, and an adjudication strategy (simulating a multireader approach to resolving discordant nodule classifications), integrating two binary classification models with a ternary classification model to resolve discordant classifications sequentially. The six ternary models were then tested on an external data set of pGGNs imaged between December 2019 and January 2021. Diagnostic performance including accuracy, specificity, and sensitivity was assessed. The χ2 test was used to compare model performance in different subgroups stratified by clinical confounders. Results A total of 4929 nodules from 4483 patients (mean age, 50.1 years ± 9.5 [SD]; 2806 female) were divided into training (n = 3384), validation (n = 579), and internal (n = 966) test sets. A total of 361 pGGNs from 281 patients (mean age, 55.2 years ± 11.1 [SD]; 186 female) formed the external test set. The proposed strategy improved DL model performance in external testing (P < .001). For classifying minimally invasive adenocarcinoma, the accuracy was 85% and 79%, sensitivity was 75% and 63%, and specificity was 89% and 85% for the model with adjudication (model 6) and the model without (model 3), respectively. Model 6 showed a relatively narrow range (maximum minus minimum) across diagnostic indexes (accuracy, 1.7%; sensitivity, 7.3%; specificity, 0.9%) compared with the other models (accuracy, 0.6%–10.8%; sensitivity, 14%–39.1%; specificity, 5.5%–17.9%). Conclusion Combining framework optimization, joint learning, and an adjudication approach improved DL classification of adenocarcinoma invasiveness at chest CT. Published under a CC BY 4.0 license. Supplemental material is available for this article. See also the editorial by Sohn and Fields in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助勇往直前采纳,获得10
34秒前
随心所欲完成签到 ,获得积分10
39秒前
52秒前
勇往直前发布了新的文献求助10
57秒前
晴莹完成签到 ,获得积分10
59秒前
小孙完成签到,获得积分10
1分钟前
lb001完成签到 ,获得积分10
1分钟前
碗碗完成签到,获得积分10
1分钟前
lily完成签到 ,获得积分10
1分钟前
李志全完成签到 ,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
纸条条完成签到 ,获得积分10
1分钟前
宇文雨文完成签到 ,获得积分10
1分钟前
Soenyhyeon完成签到 ,获得积分10
1分钟前
waihang发布了新的文献求助10
2分钟前
Will完成签到,获得积分10
2分钟前
殷勤的紫槐完成签到,获得积分10
2分钟前
huanghe完成签到,获得积分10
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
Yina完成签到 ,获得积分10
2分钟前
racill完成签到 ,获得积分10
3分钟前
隐形曼青应助勤恳缘分采纳,获得10
3分钟前
啊哈哈哈完成签到,获得积分10
3分钟前
小丸子完成签到 ,获得积分0
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
4分钟前
turtle完成签到 ,获得积分10
4分钟前
无奈的萍完成签到,获得积分10
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
传奇3应助科研通管家采纳,获得10
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
任伟超完成签到,获得积分10
4分钟前
naczx完成签到,获得积分10
5分钟前
邓洁宜完成签到,获得积分10
6分钟前
Wang完成签到 ,获得积分20
6分钟前
Alicia完成签到 ,获得积分10
6分钟前
creep2020完成签到,获得积分10
6分钟前
爆米花应助科研通管家采纳,获得50
6分钟前
老张完成签到 ,获得积分10
7分钟前
7分钟前
夏紫儿完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4774061
求助须知:如何正确求助?哪些是违规求助? 4107255
关于积分的说明 12704759
捐赠科研通 3827860
什么是DOI,文献DOI怎么找? 2111822
邀请新用户注册赠送积分活动 1135806
关于科研通互助平台的介绍 1019105