A predictive model for metabolic syndrome in a community-based population with sleep apnea: a secondary prevention screening tool using simple and accessible indicators

作者
Tong Feng,Q. Ou,Guangliang Shan,Yaoda Hu,Huijing He
出处
期刊:Frontiers in Nutrition [Frontiers Media SA]
卷期号:12
标识
DOI:10.3389/fnut.2025.1667055
摘要

Objective To establish a secondary prevention screening model for predicting metabolic syndrome (MetS) based on community obstructive sleep apnea (OSA) screening, using simple and easily accessible indicators, to help early identification of high-risk individuals and improve prognosis and reduce mortality. Methods This study enrolled adults newly diagnosed with OSA from community settings in China, collecting comprehensive demographic and lifestyle data. To identify key predictive variables, least absolute shrinkage and selection operator (LASSO) regression was employed for feature selection. Nine machine learning algorithms, such as logistic regression, random forest, and support vector machine (SVM), were then used to build predictive models, with each undergoing rigorous training, hyperparameter tuning, and evaluation on stratified training, validation, and test datasets. Model performance was evaluated using multiple metrics, including the area under the receiver operating characteristic curve (AUC-ROC), accuracy, sensitivity, specificity, F1 score, calibration curves, and clinical decision curve analysis (DCA). To improve interpretability, Shapley additive explanations (SHAP) analysis was applied to quantify each predictor's contribution to the model's output. Results Among the nine machine learning algorithms evaluated, the logistic regression model exhibited superior performance. The finalized model achieved an AUC of 0.814 on the test dataset, demonstrating strong discriminative ability. Key performance metrics included a sensitivity of 0.794, specificity of 0.647, accuracy of 0.693, and an F1 score of 0.617. Feature importance analysis highlighted body mass index (BMI), age, and gender as the most significant predictors of MetS. Calibration curves and clinical DCA further confirmed the model's reliability, showing close alignment between predicted probabilities and observed outcomes, thus affirming its clinical utility. External validation reinforced the model's robustness, yielding an AUC of 0.818, with consistent discrimination and well-calibrated predictions. Conclusion This study successfully developed a MetS prediction model based on community environment. The model relies solely on simple, easily obtainable self-reported indicators and demonstrates good predictive performance. This model, as a primary screening tool, enables residents to assess their MetS risk status independently, without relying on complex biochemical tests or the assistance of specialized medical personnel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
samxie完成签到,获得积分10
1秒前
1秒前
笑点低的初瑶完成签到,获得积分20
2秒前
科研小牛完成签到,获得积分10
2秒前
touch完成签到 ,获得积分10
2秒前
神奇的海螺完成签到,获得积分10
3秒前
梁某发布了新的文献求助30
3秒前
3秒前
康兴宇发布了新的文献求助10
3秒前
Jasper应助端庄的豆芽采纳,获得10
4秒前
爆米花应助7号lemon采纳,获得10
5秒前
6秒前
12333发布了新的文献求助10
7秒前
9秒前
9秒前
等待听安完成签到 ,获得积分10
9秒前
多多完成签到,获得积分20
9秒前
11秒前
12秒前
ZKW发布了新的文献求助10
13秒前
13秒前
13秒前
Daisy123k完成签到,获得积分10
13秒前
13秒前
liugm完成签到,获得积分10
16秒前
洛希极限完成签到,获得积分10
16秒前
18秒前
李健应助小浣熊采纳,获得10
18秒前
18秒前
顶顶顶发布了新的文献求助10
19秒前
20秒前
20秒前
顾矜应助安详的未来采纳,获得10
21秒前
22秒前
咕咕发布了新的文献求助10
23秒前
drfwjuikesv发布了新的文献求助10
24秒前
bound发布了新的文献求助10
24秒前
充电宝应助康兴宇采纳,获得10
24秒前
图图发布了新的文献求助10
24秒前
可爱的函函应助梁某采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289127
求助须知:如何正确求助?哪些是违规求助? 4440879
关于积分的说明 13825797
捐赠科研通 4323161
什么是DOI,文献DOI怎么找? 2372993
邀请新用户注册赠送积分活动 1368430
关于科研通互助平台的介绍 1332352