亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rolling Bearing Fault Diagnosis via Parallel Heterogeneous Deep Network with Transfer Learning

作者
Le Zhang,Xianlong Peng,Hong‐Chun Zhu
出处
期刊:Applied sciences [MDPI AG]
卷期号:15 (23): 12575-12575
标识
DOI:10.3390/app152312575
摘要

Rolling bearings are critical components in rotating machinery, and their performance degrades over time due to operational wear, which may compromise the safety and efficiency of mechanical systems. Therefore, accurate and timely fault diagnosis of rolling bearings is crucial. In real-world industrial environments, such diagnosis remains challenging owing to complex and varying operating conditions. Conventional single-modality deep learning methods often face limitations and fail to satisfy practical demands. To overcome these challenges, this paper proposes a novel fault diagnosis approach based on a Parallel Heterogeneous Deep Network (PHDN-FD). First, the original vibration signals are segmented according to signal pattern similarity. The continuous wavelet transform (CWT) using the Morse wavelet is applied to convert one-dimensional signal segments into two-dimensional time–frequency representations. Subsequently, each signal segment and its corresponding time–frequency representation are paired to form input data for a dual-branch parallel network. One branch, based on the ConvNeXt architecture, extracts spatial features from the time–frequency images, while the other branch employs a 1D-ResNet to capture temporal features from the raw signal segments. The features from both branches are then fused and fed into a three-layer feedforward neural network for final fault classification. Experimental results on the Case Western Reserve University (CWRU) bearing dataset and Korean Academy of Science and Technology (KAIST) bearing datasets show that the proposed method achieves high diagnostic accuracy even under adverse conditions, such as noise interference, limited training samples, and variable load levels. Moreover, the model exhibits strong cross-load transferability. By effectively integrating multimodal feature representations, the PHDN-FD framework improves both diagnostic accuracy and model robustness in complex operational scenarios, establishing a solid foundation for industrial deployment and demonstrating significant potential for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
114514完成签到,获得积分10
刚刚
8秒前
Willow发布了新的文献求助10
12秒前
29秒前
Willow完成签到,获得积分10
32秒前
57秒前
1分钟前
tian发布了新的文献求助10
1分钟前
1分钟前
tian完成签到,获得积分20
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
NEM嬛嬛驾到完成签到,获得积分10
2分钟前
2分钟前
欢欢完成签到,获得积分10
2分钟前
2分钟前
拼搏姒发布了新的文献求助10
2分钟前
Hello应助yiyilan采纳,获得10
2分钟前
3分钟前
3分钟前
3分钟前
WXKennyS发布了新的文献求助10
3分钟前
计划发布了新的文献求助10
3分钟前
3分钟前
AAA发布了新的文献求助10
3分钟前
3分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
WXKennyS发布了新的文献求助10
4分钟前
WXKennyS完成签到,获得积分10
4分钟前
从来都不会放弃zr完成签到,获得积分10
4分钟前
lin发布了新的文献求助10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534249
求助须知:如何正确求助?哪些是违规求助? 4622306
关于积分的说明 14582485
捐赠科研通 4562554
什么是DOI,文献DOI怎么找? 2500214
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938