Predicting parameters and sensitivity assessment of nano-silica-based fiber-reinforced concrete: a sustainable construction material

支持向量机 均方误差 平均绝对百分比误差 多层感知器 灵敏度(控制系统) 材料科学 人工神经网络 纳米- 数学 统计 生物系统 机器学习 计算机科学 复合材料 工程类 生物 电子工程
作者
Muhammad Nasir Amin,Kaffayatullah Khan,Muhammad Sufian,Qasem M. S. Al-Ahmad,Ahmed Farouk Deifalla,Fahad Alsharari
出处
期刊:Journal of materials research and technology [Elsevier BV]
卷期号:23: 3943-3960 被引量:15
标识
DOI:10.1016/j.jmrt.2023.02.021
摘要

This study evaluates the compressive strength (C–S) of nano-silica-based fiber-reinforced concrete (NS-FRC) by using advanced machine learning (ML) individual and ensembled techniques. The employed advanced ML approaches used for the analysis are Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and eXtreme Gradient Boosting (XGB). Furthermore, the level of accuracy for the employed advanced algorithms is also evaluated by the k-fold cross-validation technique. Statistical checks, i.e., root mean square error (RMSE), mean absolute error (MAE) and mean absolute percent error (MAPE), are also applied to validate the performance of algorithms. Sensitivity analysis is also made to explore the influence of input parameters on the C–S of NS-FRC. Among all, the XGB technique is found most effective for an accurate C–S prediction of NS-FRC. In XGB model, the coefficient of determination (R2) is 0.95, which is comparatively more than that of SVM (0.90) and MLP (0.90). The MAE value of XGB algorithm is 3.3 MPa which is lower than that of SVM (4.8 MPa) and MLP (4.5 MPa). In addition, RMSE value is also less for XGB algorithm (3.8 MPa) as compared to that of SVM (5.5 MPa) and MLP (5.9 MPa). Furthermore, the employed XGB models exhibited highest R2 of 0.95 as compared to the models reported in the available literature. The sensitivity analysis revealed that the nano-silica influenced the C–S of NS-FRC by 7%. Moreover, discussion reveals that nano-silica in concrete can have several benefits, such as improved microstructure, enhanced strength, prolonged durability, reduced cement content, and less carbon emission.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
星辰大海应助HHHH采纳,获得10
1秒前
可爱的函函应助勤劳寡妇采纳,获得10
2秒前
2秒前
2秒前
眉间一把刀完成签到,获得积分10
2秒前
yue完成签到 ,获得积分10
2秒前
优秀的乐荷完成签到,获得积分10
3秒前
liuniuniu发布了新的文献求助10
4秒前
4秒前
Wyan发布了新的文献求助10
4秒前
4秒前
xiao闫取经路完成签到,获得积分20
5秒前
李烛尘完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
Naruto发布了新的文献求助10
7秒前
7秒前
xiaozhang发布了新的文献求助10
8秒前
8秒前
QQQ发布了新的文献求助10
9秒前
Lisisi完成签到,获得积分10
10秒前
赛德克发布了新的文献求助10
11秒前
12秒前
酷波er应助温婉的念文采纳,获得10
12秒前
13秒前
852应助liuniuniu采纳,获得10
13秒前
划水的鱼发布了新的文献求助10
14秒前
HHHH发布了新的文献求助10
14秒前
小徐801完成签到,获得积分10
14秒前
15秒前
李嘉图完成签到,获得积分10
16秒前
吾问无为谓完成签到,获得积分20
16秒前
活泼的梨愁完成签到,获得积分10
16秒前
缓慢思枫发布了新的文献求助10
17秒前
17秒前
共享精神应助QQQ采纳,获得10
17秒前
pp完成签到,获得积分20
17秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4095136
求助须知:如何正确求助?哪些是违规求助? 3633294
关于积分的说明 11516572
捐赠科研通 3344025
什么是DOI,文献DOI怎么找? 1837912
邀请新用户注册赠送积分活动 905421
科研通“疑难数据库(出版商)”最低求助积分说明 823171