Pseudo-Mono for Monocular 3D Object Detection in Autonomous Driving

人工智能 计算机视觉 计算机科学 单眼 特征(语言学) 目标检测 初始化 特征提取 模式识别(心理学) 哲学 语言学 程序设计语言
作者
Chongben Tao,Jiecheng Cao,Chen Wang,Zufeng Zhang,Zhen Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3962-3975 被引量:18
标识
DOI:10.1109/tcsvt.2023.3237579
摘要

Current monocular 3D object detection algorithms generally suffer from inaccurate depth estimation, which leads to reduction of detection accuracy. The depth error from image-to-image generation for the stereo view is insignificant compared with the gap in single-image generation. Therefore, a novel pseudo-monocular 3D object detection framework is proposed, which is called Pseudo-Mono. Particularly, stereo images are brought into monocular 3D detection. Firstly, stereo images are taken as input, then a lightweight depth predictor is used to generate the depth map of input images. Secondly, the left input images obtained from stereo camera are used as subjects, which generate enhanced visual feature and multi-scale depth feature by depth indexing and feature matching probabilities, respectively. Finally, sparse anchors set by the foreground probability maps and the multi-scale feature maps are used as reference points to find the suitable initialization approach of object query. The encoded visual feature is adopted to enhance object query for enabling deep interaction between visual feature and depth feature. Compared with popular monocular 3D object detection methods, Pseudo-Mono is able to achieve richer fine-grained information without additional data input. Extensive experimental results on the datasets of KITTI, NuScenes, and MS-COCO demonstrate the generalizability and portability of the proposed method. The effectiveness and efficiency of Pseudo-Mono have been demonstrated by extensive ablation experiments. Experiments on a real vehicle platform have shown that the proposed method maintains high performance in complex real-world environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lancer发布了新的文献求助10
1秒前
帅气一刀发布了新的文献求助10
1秒前
田様应助人不犯二枉少年采纳,获得10
1秒前
he1204关注了科研通微信公众号
2秒前
2秒前
Jasper应助xiaoyezi123采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
4秒前
lxrrrr完成签到,获得积分20
5秒前
抹茶拿铁加奶砖完成签到 ,获得积分10
5秒前
兴奋的果汁完成签到,获得积分10
5秒前
碗碗发布了新的文献求助10
5秒前
爹爹发布了新的文献求助10
6秒前
Aura发布了新的文献求助10
6秒前
7秒前
lxrrrr发布了新的文献求助30
8秒前
8秒前
8秒前
贪玩小小发布了新的文献求助20
9秒前
hao123发布了新的文献求助10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
Ava应助风趣的老太采纳,获得10
11秒前
shezhinicheng发布了新的文献求助10
11秒前
大气靳完成签到,获得积分20
11秒前
二三完成签到 ,获得积分10
12秒前
Nora发布了新的文献求助10
12秒前
虾仁猪心完成签到,获得积分10
12秒前
12秒前
12秒前
上官若男应助大气的雁桃采纳,获得10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Mechanochemistry of Solid Surfaces 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806711
求助须知:如何正确求助?哪些是违规求助? 3351419
关于积分的说明 10354020
捐赠科研通 3067233
什么是DOI,文献DOI怎么找? 1684428
邀请新用户注册赠送积分活动 809655
科研通“疑难数据库(出版商)”最低求助积分说明 765568