Pseudo-Mono for Monocular 3D Object Detection in Autonomous Driving

人工智能 计算机视觉 计算机科学 单眼 特征(语言学) 目标检测 初始化 特征提取 模式识别(心理学) 哲学 语言学 程序设计语言
作者
Chongben Tao,Jiecheng Cao,Chen Wang,Zufeng Zhang,Zhen Gao
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:33 (8): 3962-3975 被引量:18
标识
DOI:10.1109/tcsvt.2023.3237579
摘要

Current monocular 3D object detection algorithms generally suffer from inaccurate depth estimation, which leads to reduction of detection accuracy. The depth error from image-to-image generation for the stereo view is insignificant compared with the gap in single-image generation. Therefore, a novel pseudo-monocular 3D object detection framework is proposed, which is called Pseudo-Mono. Particularly, stereo images are brought into monocular 3D detection. Firstly, stereo images are taken as input, then a lightweight depth predictor is used to generate the depth map of input images. Secondly, the left input images obtained from stereo camera are used as subjects, which generate enhanced visual feature and multi-scale depth feature by depth indexing and feature matching probabilities, respectively. Finally, sparse anchors set by the foreground probability maps and the multi-scale feature maps are used as reference points to find the suitable initialization approach of object query. The encoded visual feature is adopted to enhance object query for enabling deep interaction between visual feature and depth feature. Compared with popular monocular 3D object detection methods, Pseudo-Mono is able to achieve richer fine-grained information without additional data input. Extensive experimental results on the datasets of KITTI, NuScenes, and MS-COCO demonstrate the generalizability and portability of the proposed method. The effectiveness and efficiency of Pseudo-Mono have been demonstrated by extensive ablation experiments. Experiments on a real vehicle platform have shown that the proposed method maintains high performance in complex real-world environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大地完成签到,获得积分10
刚刚
5552222完成签到,获得积分10
刚刚
香蕉觅云应助别吃小米粥采纳,获得10
刚刚
yyy完成签到,获得积分10
刚刚
zhufy发布了新的文献求助10
刚刚
clw完成签到,获得积分10
2秒前
123554完成签到 ,获得积分20
2秒前
美好斓发布了新的文献求助10
2秒前
3秒前
黄瑞音完成签到,获得积分10
3秒前
WIND-CUTTER完成签到,获得积分10
4秒前
4秒前
zhshyhy完成签到,获得积分10
5秒前
北北北应助余真谛采纳,获得10
5秒前
cxzdm完成签到,获得积分10
6秒前
6秒前
yyy发布了新的文献求助10
6秒前
微微发布了新的文献求助10
6秒前
8秒前
赵保钢完成签到,获得积分10
9秒前
9秒前
今天心情好朋友完成签到 ,获得积分10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
泥泥应助科研通管家采纳,获得50
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
田様应助科研通管家采纳,获得10
11秒前
lgq12697应助科研通管家采纳,获得20
11秒前
11秒前
深情安青应助yuhan采纳,获得10
12秒前
12秒前
12秒前
刘华银发布了新的文献求助10
13秒前
zhufy完成签到,获得积分10
13秒前
研友_ngKqrn完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4462641
求助须知:如何正确求助?哪些是违规求助? 3925722
关于积分的说明 12182200
捐赠科研通 3578179
什么是DOI,文献DOI怎么找? 1965847
邀请新用户注册赠送积分活动 1004562
科研通“疑难数据库(出版商)”最低求助积分说明 898975