材料科学
石墨烯
灵敏度(控制系统)
压力传感器
压阻效应
机器人学
电压
导电体
非线性系统
电阻式触摸屏
数码产品
柔性电子器件
信号(编程语言)
光电子学
纳米技术
电子工程
计算机科学
机器人
机械工程
电气工程
复合材料
人工智能
物理
工程类
量子力学
程序设计语言
计算机视觉
作者
Feng Luo,Artur Ciesielski,Paolo Samorı́
标识
DOI:10.1002/adma.202503867
摘要
Abstract Thermal fluctuations pose a significant challenge to the signal stability of nanomaterial‐based piezoresistive pressure sensors, limiting their effectiveness in applications such as electronic skin and robotics. Conventional temperature compensation strategies often rely on additional thermal sensors or complex calibration algorithms. Here, a flexible pressure sensor is reported featuring a nonlinear conductive graphene composite layer within a bilayer architecture, enabling bias voltage‐controlled sensitivity without structural redesign. The sensor achieves ultra‐high sensitivity (742.3 kPa −1 ), a broad linear sensing range of up to 800 kPa ( R 2 = 0.99913), and excellent long‐term durability over 10 000 cycles. Crucially, the unique nonlinear characteristics enable the bias voltage to function as an internal remote control for correcting temperature drifts between 25 and 60 °C, as demonstrated by precise manipulation in robotic grippers under varying temperature conditions. This work offers a universal strategy for building environmentally adaptive sensors, advancing the development of robust and high‐precision wearable electronics.
科研通智能强力驱动
Strongly Powered by AbleSci AI