A Novel Deep Learning–based Pathomics Score for Prognostic Stratification in Pancreatic Ductal Adenocarcinoma

医学 胰腺导管腺癌 内科学 比例危险模型 危险系数 肿瘤科 生存分析 队列 阶段(地层学) 回顾性队列研究 接收机工作特性 对数秩检验 胰腺癌 癌症 置信区间 生物 古生物学
作者
Wenbin Liu,Jing Li,Xiaohan Yuan,Cheng‐Wei Chen,Youliang Shen,Xinyue Zhang,Jieyu Yu,Mengmeng Zhu,Xu Fang,Fang Liu,Tiegong Wang,Li Wang,Jie Fan,Hui Jiang,Jianping Lu,Chengwei Shao,Yun Bian
出处
期刊:Pancreas [Lippincott Williams & Wilkins]
卷期号:54 (5): e430-e441
标识
DOI:10.1097/mpa.0000000000002463
摘要

Background and Objectives: Accurate survival prediction for pancreatic ductal adenocarcinoma (PDAC) is crucial for personalized treatment strategies. This study aims to construct a novel pathomics indicator using hematoxylin and eosin–stained whole slide images and deep learning to enhance PDAC prognosis prediction. Methods: A retrospective, 2-center study analyzed 864 PDAC patients diagnosed between January 2015 and March 2022. Using weakly supervised and multiple instance learning, pathologic features predicting 2-year survival were extracted. Pathomics features, including probability histograms and TF-IDF, were selected through random survival forests. Survival analysis was conducted using Kaplan-Meier curves, log-rank tests, and Cox regression, with AUROC and C-index used to assess model discrimination. Results: The study cohort comprised 489 patients for training, 211 for validation, and 164 in the neoadjuvant therapy (NAT) group. A pathomics score was developed using 7 features, dividing patients into high-risk and low-risk groups based on the median score of 131.11. Significant survival differences were observed between groups ( P <0.0001). The pathomics score was a robust independent prognostic factor [Training: hazard ratio (HR)=3.90; Validation: HR=3.49; NAT: HR=4.82; all P <0.001]. Subgroup analyses revealed higher survival rates for early-stage low-risk patients and NAT responders compared to high-risk counterparts (both P <0.05 and P <0.0001). The pathomics model surpassed clinical models in predicting 1-, 2-, and 3-year survival. Conclusions: The pathomics score serves as a cost-effective and precise prognostic tool, functioning as an independent prognostic indicator that enables precise stratification and enhances the prediction of prognosis when combined with traditional pathologic features. This advancement has the potential to significantly impact PDAC treatment planning and improve patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
模糊老师完成签到,获得积分10
1秒前
wxc发布了新的文献求助10
2秒前
九儿发布了新的文献求助10
3秒前
研友_VZG7GZ应助灵巧大地采纳,获得10
3秒前
GAGAJJJ发布了新的文献求助10
4秒前
12发布了新的文献求助10
4秒前
一二三四发布了新的文献求助10
7秒前
April完成签到,获得积分10
8秒前
xxxxxb完成签到,获得积分10
9秒前
10秒前
雨滴音乐完成签到,获得积分10
10秒前
12秒前
14秒前
14秒前
14秒前
yht完成签到,获得积分10
16秒前
16秒前
情怀应助超帅的天曼采纳,获得10
17秒前
小蘑菇应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
8R60d8应助科研通管家采纳,获得10
17秒前
科研通AI6应助τ涛采纳,获得10
17秒前
小马甲应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得10
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
肖鼎原完成签到,获得积分10
17秒前
勤恳的皮卡丘完成签到,获得积分10
18秒前
18秒前
qyh发布了新的文献求助10
19秒前
19秒前
孙亦沈发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
cy完成签到 ,获得积分10
22秒前
女王完成签到 ,获得积分10
23秒前
可爱的函函应助耳东采纳,获得10
23秒前
wangzhenghua完成签到 ,获得积分10
23秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317550
求助须知:如何正确求助?哪些是违规求助? 4459997
关于积分的说明 13877109
捐赠科研通 4350212
什么是DOI,文献DOI怎么找? 2389278
邀请新用户注册赠送积分活动 1383449
关于科研通互助平台的介绍 1352792