Two-stage framework with improved U-Net based on self-supervised contrastive learning for pavement crack segmentation

计算机科学 人工智能 分割 残余物 特征(语言学) 模式识别(心理学) 半监督学习 深度学习 特征学习 特征向量 监督学习 机器学习 代表(政治) 基本事实 阶段(地层学) 人工神经网络 地质学 算法 古生物学 哲学 语言学 政治 政治学 法学
作者
Qingsong Song,Wei Yao,Haojiang Tian,Yidan Guo,Ravie Chandren Muniyandi,Yisheng An
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122406-122406 被引量:5
标识
DOI:10.1016/j.eswa.2023.122406
摘要

After the deep learning method emerged, the automated detection technology of pavement crack images has significantly progressed. The dominant approach is supervised deep learning, which relies on large-scale labeled ground truth. However, the problems are mostly unlabeled original crack images, which are difficult to fully utilize by the supervised deep learning network model. As a representative method of self-supervised learning, contrast learning can learn feature representations from unlabeled data, thus improving the accuracy of downstream tasks. This paper proposes a two-stage framework with improved U-Net based on self-supervised contrastive learning for pavement crack image segmentation. The framework takes improved U-Net as the basic architecture to highlight the significant features of the target segment of fine cracks. U-Net is improved by integrating the residual structure and attention mechanism in the typical U-Net architecture. The framework includes two learning stages: pre-training and fine-tuning. In the pre-training stage, the potential feature representation is learned from the unlabeled crack image. Crack images and pavement background images are used in the training data so that the model learns the distinguishable mapping relationship between crack and its background in the high-dimensional vector space without supervision comparison. In the fine-tuning stage, the network loads the parameters after the pre-training and uses the labeled training data for the retraining. Experimental results show that the proposed two-stage framework significantly improves the performance of crack segmentation accuracy without increasing the number of existing training samples and their labeling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
白河给马龙的求助进行了留言
2秒前
Orange应助Mandy采纳,获得10
4秒前
4秒前
海岢发布了新的文献求助10
5秒前
冰魂应助帅气小医仙采纳,获得10
5秒前
6秒前
内向映天完成签到 ,获得积分10
8秒前
8秒前
leo完成签到,获得积分10
11秒前
12秒前
12秒前
1762571452完成签到,获得积分10
15秒前
16秒前
小雨点完成签到 ,获得积分10
16秒前
科研通AI5应助llmmnn采纳,获得30
17秒前
小蘑菇应助Lilith采纳,获得10
17秒前
科研通AI2S应助入戏太深采纳,获得10
18秒前
Ling发布了新的文献求助10
21秒前
船长完成签到,获得积分10
22秒前
科研通AI5应助Culto采纳,获得10
23秒前
平淡萤发布了新的文献求助10
24秒前
26秒前
29秒前
30秒前
32秒前
艾克发布了新的文献求助10
33秒前
Culto发布了新的文献求助10
35秒前
海岢完成签到,获得积分10
36秒前
阿银发布了新的文献求助10
36秒前
38秒前
文献看不懂应助入戏太深采纳,获得10
38秒前
悲凉的初翠完成签到,获得积分10
39秒前
39秒前
iamddddyh完成签到,获得积分10
39秒前
42秒前
42秒前
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776524
求助须知:如何正确求助?哪些是违规求助? 3322078
关于积分的说明 10208657
捐赠科研通 3037336
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757878