Response surface methodology and artificial neural network-genetic algorithm for modeling and optimization of bioenergy production from biochar-improved anaerobic digestion

生物炭 响应面法 生物能源 中心组合设计 厌氧消化 稻草 热解 均方误差 制浆造纸工业 数学 甲烷 化学 生物燃料 废物管理 工程类 统计 有机化学 无机化学
作者
Yuanhang Zhan,Jun Zhu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:355: 122336-122336 被引量:8
标识
DOI:10.1016/j.apenergy.2023.122336
摘要

Biochar can be used to improve the anaerobic digestion (AD) of agricultural wastes for higher methane production. However, the interaction of biochar addition with other factors of the anaerobic co-digestion (Co-AD) process has rarely been investigated. In this study, process models based on response surface methodology (RSM) and artificial neural network (ANN) were compared in modeling the methane yield (MY, mL CH4/g VS added) from the Co-AD of poultry litter and wheat straw with biochar addition. Box-Behnken design was applied, with the controlling parameters being carbon to nitrogen ratio (C/N), total solids (TS, %), and biochar addition (Biochar, % TS). Numerical optimization and genetic algorithm (GA) were used as optimization tools for RSM and ANN, respectively. A significant second-order quadratic model was built by RSM (R2 = 0.9981 and RMSE = 0.91), which demonstrated significant interactions between C/N and TS (p < 0.0001), and between C/N and Biochar (p < 0.05). The trained ANN (3−3−1) was less accurate (R2 = 0.9926, RMSE = 1.80) compared to RSM. The optimization results by RSM and ANN coupled with GA (ANN-GA) were both validated with prediction errors <0.5%. The optimization results by ANN-GA should be used since it generated a higher maximum MY of 290.7 ± 0.2 mL CH4/g VS added, under the optimal conditions of C/N ratio 24.46, TS 5.03%, and Biochar 8.73% TS, showing an improvement of 20.6% (compared to the control) through process optimization. The methods can also be applied in other scenarios for process modeling and optimization. The optimized results could support real applications of using additives including biochar, active carbon, nanoparticles, etc., to promote the bioenergy production from AD of agricultural wastes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文武完成签到,获得积分10
刚刚
demmeretock发布了新的文献求助10
1秒前
2秒前
3秒前
甜美怜蕾完成签到,获得积分10
4秒前
5秒前
6秒前
寒冷的面包完成签到,获得积分10
6秒前
苗条的酸奶完成签到,获得积分10
7秒前
派大欣发布了新的文献求助10
7秒前
Zero完成签到,获得积分10
7秒前
steven发布了新的文献求助150
8秒前
冯紫怡发布了新的文献求助10
8秒前
9秒前
Zw驳回了JamesPei应助
10秒前
马香芦完成签到,获得积分10
11秒前
星辰大海应助dong东包采纳,获得10
11秒前
张宏宇发布了新的文献求助10
11秒前
12秒前
slowfloat完成签到,获得积分10
16秒前
小马甲应助张宏宇采纳,获得10
17秒前
20秒前
FashionBoy应助超人不会飞采纳,获得10
21秒前
天地侵略者完成签到,获得积分10
21秒前
22秒前
海洋球完成签到,获得积分10
23秒前
23秒前
ningwu完成签到,获得积分10
25秒前
科研通AI5应助清爽的绿蝶采纳,获得10
27秒前
zeng完成签到,获得积分20
29秒前
30秒前
31秒前
朴素代芙完成签到,获得积分10
32秒前
33秒前
卡尔发布了新的文献求助10
34秒前
Hello应助科研通管家采纳,获得10
35秒前
星辰大海应助科研通管家采纳,获得10
35秒前
35秒前
35秒前
zeng发布了新的文献求助10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783242
求助须知:如何正确求助?哪些是违规求助? 3328572
关于积分的说明 10237098
捐赠科研通 3043689
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799792
科研通“疑难数据库(出版商)”最低求助积分说明 759130