Towards Domain Generalization for ECG and EEG Classification: Algorithms and Benchmarks

水准点(测量) 生物信号 计算机科学 概化理论 一般化 人工智能 机器学习 领域(数学) 领域(数学分析) 人工神经网络 过程(计算) 脑电图 算法 无线 数学 精神科 操作系统 数学分析 统计 电信 纯数学 地理 心理学 大地测量学
作者
Aristotelis Ballas,Christos Diou
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 44-54 被引量:11
标识
DOI:10.1109/tetci.2023.3306253
摘要

Despite their immense success in numerous fields, machine and deep learning systems have not yet been able to firmly establish themselves in mission-critical applications in healthcare. One of the main reasons lies in the fact that when models are presented with previously unseen, Out-of-Distribution samples, their performance deteriorates significantly. This is known as the Domain Generalization (DG) problem. Our objective in this work is to propose a benchmark for evaluating DG algorithms, in addition to introducing a novel architecture for tackling DG in biosignal classification. In this article, we describe the Domain Generalization problem for biosignals, focusing on electrocardiograms (ECG) and electroencephalograms (EEG) and propose and implement an open-source biosignal DG evaluation benchmark. Furthermore, we adapt state-of-the-art DG algorithms from computer vision to the problem of 1D biosignal classification and evaluate their effectiveness. Finally, we also introduce a novel neural network architecture that leverages multi-layer representations for improved model generalizability. By implementing the above DG setup we are able to experimentally demonstrate the presence of the DG problem in ECG and EEG datasets. In addition, our proposed model demonstrates improved effectiveness compared to the baseline algorithms, exceeding the state-of-the-art in both datasets. Recognizing the significance of the distribution shift present in biosignal datasets, the presented benchmark aims at urging further research into the field of biomedical DG by simplifying the evaluation process of proposed algorithms. To our knowledge, this is the first attempt at developing an open-source framework for evaluating ECG and EEG DG algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助Joff_W采纳,获得10
1秒前
1秒前
腾腾发布了新的文献求助20
1秒前
1秒前
刘松发布了新的文献求助10
1秒前
跳跃的鱼发布了新的文献求助10
1秒前
2秒前
Maestro_S应助MoonYC采纳,获得20
2秒前
科研大佬修炼手册完成签到,获得积分10
3秒前
w1发布了新的文献求助10
3秒前
戈笙gg发布了新的文献求助10
3秒前
Spine Lin发布了新的文献求助10
3秒前
MNZZ发布了新的文献求助10
4秒前
Irena完成签到 ,获得积分10
4秒前
一寒完成签到 ,获得积分10
4秒前
sihan625完成签到,获得积分10
5秒前
我是老大应助薄薄的厚片采纳,获得10
5秒前
wuyyuan完成签到 ,获得积分10
6秒前
浮浮世世发布了新的文献求助20
6秒前
阳光绿柏完成签到,获得积分10
6秒前
伍六七发布了新的文献求助10
6秒前
6秒前
LIHAO完成签到,获得积分20
6秒前
6秒前
爆米花应助灵巧秋天采纳,获得10
7秒前
7秒前
欣欣子完成签到,获得积分10
8秒前
8秒前
万能图书馆应助文艺谷蓝采纳,获得10
9秒前
Luloo发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
田様应助科研通管家采纳,获得10
10秒前
人生几何应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
Avatar完成签到,获得积分10
11秒前
Hello应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5259868
求助须知:如何正确求助?哪些是违规求助? 4421366
关于积分的说明 13762922
捐赠科研通 4295395
什么是DOI,文献DOI怎么找? 2356893
邀请新用户注册赠送积分活动 1353212
关于科研通互助平台的介绍 1314393