Self-healing electrical bioadhesive interface for electrophysiology recording

生物粘附 生物医学工程 材料科学 生物电子学 纳米技术 电极 压阻效应 计算机科学 光电子学 生物传感器 医学 化学 物理化学 药物输送
作者
Hude Ma,Jingdan Hou,Xiao Xiao,Rongtai Wan,Gang Ge,Wenqian Zheng,Chen Chen,Jie Cao,Jin‐Ye Wang,Chang Liu,Qi Zhao,Zhilin Zhang,Peng Jiang,Shuai Chen,Wenhui Xiong,Jingkun Xu,Baoyang Lu
出处
期刊:Journal of Colloid and Interface Science [Elsevier BV]
卷期号:654: 639-648 被引量:17
标识
DOI:10.1016/j.jcis.2023.09.190
摘要

Electrical bioadhesive interfaces (EBIs) are standing out in various applications, including medical diagnostics, prosthetic devices, rehabilitation, and human-machine interactions. Nonetheless, crafting a reliable and advanced EBI with comprehensive properties spanning electrochemical, electrical, mechanical, and self-healing capabilities remains a formidable challenge. Herein, we develop a self-healing EBI by thoughtfully integrating conducting polymer nanofibers and a typical bioadhesive within a robust hydrogel matrix. The accomplished EBI demonstrates extraordinary adhesion (lap shear strength of 197 kPa), exceptional electrical conductivity (2.18 S m-1), and outstanding self-healing performance. Taking advantage of these attributes, we integrated the EBI into flexible skin electrodes for surface electromyography (sEMG) signal recording from forearm muscles. The engineered skin electrodes exhibit robust adhesion to the skin even when sweating, rapid self-healing from damage, and seamless real-time signal recording with a higher signal-to-noise ratio (39 dB). Our EBI, along with its skin electrodes, offers a promising platform for tissue-device integration, health monitoring, and an array of bioelectronic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周倾窈发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
认真的半兰完成签到,获得积分10
3秒前
4秒前
Ashore发布了新的文献求助30
5秒前
安详芝麻发布了新的文献求助10
8秒前
爱蕊咖完成签到 ,获得积分10
9秒前
9秒前
10秒前
13秒前
初心完成签到,获得积分10
13秒前
周倾窈完成签到,获得积分10
14秒前
15秒前
顾矜应助masterchen采纳,获得10
16秒前
小陈发布了新的文献求助10
16秒前
17秒前
哈哈哈完成签到 ,获得积分10
19秒前
LBJ23完成签到,获得积分10
19秒前
决明发布了新的文献求助10
20秒前
21秒前
22秒前
doctor2023完成签到,获得积分10
22秒前
Orange应助包子采纳,获得10
22秒前
younger完成签到,获得积分10
24秒前
灵巧的翠桃完成签到,获得积分10
24秒前
在水一方应助荔枝多酚采纳,获得10
25秒前
小麻薯发布了新的文献求助10
26秒前
科研通AI5应助落后志泽采纳,获得10
27秒前
28秒前
29秒前
灿华完成签到 ,获得积分10
29秒前
30秒前
32秒前
ori发布了新的文献求助10
34秒前
华仔应助王攀采纳,获得10
34秒前
Churchill87426完成签到,获得积分10
35秒前
月亮发布了新的文献求助10
35秒前
35秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831508
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481136
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819215
科研通“疑难数据库(出版商)”最低求助积分说明 771307