克莱恩-戈登方程
索波列夫空间
产品(数学)
空格(标点符号)
同种类的
非线性系统
小数据
二次方程
数学分析
数学物理
物理
能量(信号处理)
数学
纯数学
组合数学
量子力学
计算机科学
几何学
数据挖掘
操作系统
作者
Jun Li,Fei Tao,Huicheng Yin
摘要
In this paper, for the small initial data in the suitably weighted Sobolev spaces on the product space $ \mathbb{R}^2\times\mathbb{T} $, we establish the global existence of smooth solutions to the 3-D quasilinear Klein-Gordon equations with quadratic nonlinearities. It is noted that the topic on the well-posedness of the nonlinear hyperbolic equations on product spaces arises from the studies for the propagation of waves along infinite homogeneous waveguides and the Kaluza-Klein theory. Our main result is based on the method of normal form including the parameters $ n\in\Bbb Z $ and the continuous induction method. In addition, the free profile of the solution is obtained by applying the weighted energy estimates and the temporal decay estimates.
科研通智能强力驱动
Strongly Powered by AbleSci AI