Room-Temperature Cu-Catalyzed Amination of Aryl Bromides Enabled by DFT-Guided Ligand Design

化学 胺化 芳基 催化作用 配体(生物化学) 组合化学 烷基 有机化学 生物化学 受体
作者
Seoung‐Tae Kim,Michael J. Strauss,Albert Cabré,Stephen L. Buchwald
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:145 (12): 6966-6975 被引量:44
标识
DOI:10.1021/jacs.3c00500
摘要

Ullmann-type C-N coupling reactions represent an important alternative to well-established Pd-catalyzed approaches due to the differing reactivity and the lower cost of Cu. While the design of anionic Cu ligands, particularly those by Ma, has enabled the coupling of various classes of aryl halides and alkyl amines, most methods require conditions that can limit their utility on complex substrates. Herein, we disclose the development of anionic N1,N2-diarylbenzene-1,2-diamine ligands that promote the Cu-catalyzed amination of aryl bromides under mild conditions. Guided by DFT calculations, these ligands were designed to (1) increase the electron density on Cu, thereby increasing the rate of oxidative addition of aryl bromides, and (2) stabilize the active anionic CuI complex via a π-interaction. Under optimized conditions, structurally diverse aryl and heteroaryl bromides and a broad range of alkyl amine nucleophiles, including pharmaceuticals bearing multiple functional groups, were efficiently coupled at room temperature. Combined computational and experimental studies support a mechanism of C-N bond formation that follows a catalytic cycle akin to the well-explored Pd-catalyzed variants. Modification of the ligand structure to include a naphthyl residue resulted in a lower energy barrier to oxidative addition, providing a 30-fold rate increase relative to what is seen with other ligands. Collectively, these results establish a new class of anionic ligands for Cu-catalyzed C-N couplings, which we anticipate may be extended to other Cu-catalyzed C-heteroatom and C-C bond-forming reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
天天完成签到 ,获得积分10
19秒前
机智毛豆完成签到,获得积分10
21秒前
高兴的小完成签到,获得积分10
22秒前
saisyo发布了新的文献求助10
23秒前
reece完成签到 ,获得积分10
25秒前
26秒前
坦率尔蝶完成签到 ,获得积分10
26秒前
28秒前
平常的毛豆应助滕皓轩采纳,获得30
28秒前
科研通AI2S应助滕皓轩采纳,获得10
28秒前
29秒前
30秒前
忐忑的实验狗完成签到,获得积分10
31秒前
555我太难了完成签到,获得积分10
31秒前
32秒前
saisyo完成签到,获得积分10
32秒前
32秒前
35秒前
封腾发布了新的文献求助10
35秒前
39秒前
sutharsons应助Master-wang采纳,获得150
41秒前
不倦应助qianyuan采纳,获得10
41秒前
42秒前
king完成签到,获得积分10
43秒前
44秒前
老王发布了新的文献求助10
47秒前
FashionBoy应助橘子味的猫采纳,获得30
47秒前
King完成签到,获得积分10
48秒前
51秒前
52秒前
上善若水完成签到 ,获得积分10
54秒前
54秒前
111发布了新的文献求助10
57秒前
tdtk发布了新的文献求助10
57秒前
1分钟前
段段发布了新的文献求助10
1分钟前
1分钟前
1分钟前
日出发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778011
求助须知:如何正确求助?哪些是违规求助? 3323664
关于积分的说明 10215332
捐赠科研通 3038846
什么是DOI,文献DOI怎么找? 1667661
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339