EARR: Using rules to enhance the embedding of knowledge graph

计算机科学 知识图 嵌入 图形 可扩展性 人工智能 理论计算机科学 机器学习 数据挖掘 数据库
作者
Jin Li,J.Y. Xiang,Jianhua Cheng
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:232: 120831-120831 被引量:6
标识
DOI:10.1016/j.eswa.2023.120831
摘要

Knowledge graphs have been receiving increasing attention from researchers. However, most of these graphs are incomplete, leading to the rise of knowledge graph completion as a prominent task. The goal of knowledge graph completion is to find missing relations in a knowledge graph. Knowledge graph embedding represents the entities and relations in a low-dimensional embedding space, simplifying operations and allowing for integration with knowledge graph completion tasks. Several popular embedding models, such as TransE, TransH, TransR, TuckER, RotatE, and others have achieved impressive results on knowledge graph completion tasks. However, most of these methods do not incorporate background knowledge that could enhance the quality of knowledge embedding. Logic rules are adaptable and scalable, which can enrich background knowledge, and separating the attributes of entities can improve the relevance of relations and facilitate the accuracy of logic rule extraction. Thus, we propose a novel method, named Entity-Attribute-Relation-Rule (EARR), which separates attributes from entities and uses logic rules to extend the dataset, improving the accuracy of knowledge graph completion tasks. We define a total of six rules in this paper, including Rule 1-3, Rule 5, and Rule 6 for entities, and Rule 4 for entities and attributes. We evaluate our method based on the task of link prediction through two kinds of experiments. In the basic experiment, we compare our method with three benchmark models, namely, TransE, TransH, and TransR. In the experiment with different size datasets, FB24K and CoDEx, we evaluate our method on different size datasets with different models, including TransE, TuckER, and RotatE. The experimental results indicate that EARR can improve the quality of knowledge graph embedding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助娇气的书雁采纳,获得10
1秒前
鸭梨散打完成签到,获得积分20
1秒前
1秒前
antinomy完成签到,获得积分10
2秒前
尊敬的含之吴红多完成签到,获得积分20
2秒前
ZSQ完成签到,获得积分10
2秒前
鲤鱼小蕾完成签到,获得积分10
2秒前
11完成签到,获得积分10
2秒前
君子扑火完成签到,获得积分10
3秒前
3秒前
皮皮110完成签到,获得积分10
4秒前
zzz完成签到,获得积分20
4秒前
cc完成签到,获得积分10
4秒前
大胆初雪完成签到 ,获得积分10
5秒前
5秒前
5秒前
浮游应助汪惜寒采纳,获得10
5秒前
七七七完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助50
6秒前
6秒前
6秒前
乐乐应助splemeth采纳,获得10
7秒前
7秒前
张亚博完成签到,获得积分20
8秒前
苹果皮完成签到,获得积分10
8秒前
池林完成签到,获得积分10
9秒前
精明黄蜂发布了新的文献求助100
9秒前
田様应助苹果映菱采纳,获得30
9秒前
石头完成签到,获得积分10
9秒前
Hello应助李闻闻采纳,获得10
9秒前
10秒前
1661321476完成签到,获得积分10
10秒前
kevin完成签到 ,获得积分10
10秒前
哈哈完成签到,获得积分10
10秒前
xiax03完成签到,获得积分10
10秒前
11秒前
赖林完成签到,获得积分10
11秒前
11秒前
许天菱完成签到,获得积分10
11秒前
fick发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5080466
求助须知:如何正确求助?哪些是违规求助? 4298388
关于积分的说明 13391148
捐赠科研通 4122045
什么是DOI,文献DOI怎么找? 2257454
邀请新用户注册赠送积分活动 1261747
关于科研通互助平台的介绍 1195895