Feasibility Study of Earthquake‐Induced Damage Assessment for Structures by Utilizing Images from Surveillance Cameras

计算机科学 计算机视觉 人工智能 遥感 地质学
作者
Jing Zhou,Linsheng Huo,Chen Huang,Zhuodong Yang,Hong‐Nan Li
出处
期刊:Structural control & health monitoring [Wiley]
卷期号:2024 (1) 被引量:9
标识
DOI:10.1155/2024/4993972
摘要

Rapid and accurate structural damage assessment after an earthquake is important for efficient emergency management. The widespread application of surveillance cameras provides a new possibility for improving the efficiency of assessment. However, it is still challenging to directly assess the structural seismic damage based on videos captured by indoor surveillance cameras during earthquakes. In this study, we elaborate on the concept of estimating the structural natural frequency based on the relative pixel displacement of inter‐stories. Furthermore, we propose a strategy for post‐earthquake structural damage assessment that integrates the computer vision and time‐frequency analysis. This approach aims to navigate the difficulties inherent in earthquake damage assessment and improve emergency responses. The relative pixel displacement between the camera and the fixed features on the floor is extracted from videos by using the Harris corner detection and Kanade–Lucas–Tomasi algorithms. The structural natural frequency is estimated using the synchroextracting transform‐enhanced empirical wavelet transform. The natural frequency shift‐related seismic damage index is defined and calculated for damage assessment. A shake table experiment of a small‐scale steel model is conducted to verify the accuracy and feasibility of the approach, and the practicality of the proposed approach is further verified by utilizing the data from a full‐scale reinforced concrete benchmark model experiment. The results demonstrate that the approach can accurately and efficiently evaluate the structural damage after an earthquake based on the video captured by surveillance cameras during the earthquake. The error of the acquired damage index is less than 0.1. We will apply more advanced algorithms in the future to alleviate this problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
STEAM完成签到,获得积分10
2秒前
daixan89完成签到 ,获得积分10
9秒前
勤qin完成签到 ,获得积分10
10秒前
孙老师完成签到 ,获得积分10
24秒前
26秒前
一枝独秀完成签到 ,获得积分10
27秒前
白昼の月完成签到 ,获得积分0
28秒前
阿童木完成签到 ,获得积分10
32秒前
Akim应助曾经的凌青采纳,获得10
36秒前
Johnson完成签到 ,获得积分10
39秒前
丢星完成签到 ,获得积分10
41秒前
认真的奇异果完成签到 ,获得积分10
43秒前
悦耳的城完成签到 ,获得积分10
48秒前
49秒前
学生发布了新的文献求助10
53秒前
桔梗完成签到 ,获得积分10
56秒前
沉默的皮卡丘完成签到 ,获得积分10
1分钟前
sunny完成签到 ,获得积分10
1分钟前
小g完成签到,获得积分10
1分钟前
dajiejie完成签到 ,获得积分10
1分钟前
woniu完成签到 ,获得积分10
1分钟前
1分钟前
506407完成签到,获得积分10
1分钟前
Sweet完成签到 ,获得积分10
1分钟前
afterglow完成签到 ,获得积分10
1分钟前
bigpluto完成签到,获得积分0
1分钟前
1分钟前
Rober完成签到 ,获得积分10
1分钟前
1分钟前
gaintpeople完成签到,获得积分10
1分钟前
陈A完成签到 ,获得积分10
1分钟前
夕阳下仰望完成签到 ,获得积分10
1分钟前
Misty_完成签到,获得积分10
1分钟前
Jasperlee完成签到 ,获得积分10
1分钟前
麦田麦兜完成签到,获得积分10
1分钟前
andre20完成签到 ,获得积分10
1分钟前
曾经的凌青完成签到 ,获得积分10
1分钟前
单纯的小土豆完成签到 ,获得积分0
1分钟前
wujiwuhui完成签到 ,获得积分10
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724494
求助须知:如何正确求助?哪些是违规求助? 5289007
关于积分的说明 15299987
捐赠科研通 4872421
什么是DOI,文献DOI怎么找? 2616936
邀请新用户注册赠送积分活动 1566782
关于科研通互助平台的介绍 1523717