Modified adaptive ant colony optimization algorithm and its application for solving path planning of mobile robot

蚁群优化算法 计算机科学 运动规划 移动机器人 启发式 数学优化 人工智能 算法 机器人 数学
作者
Lei Wu,Xiaodong Huang,Junguo Cui,Chao Liu,Wensheng Xiao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:215: 119410-119410 被引量:244
标识
DOI:10.1016/j.eswa.2022.119410
摘要

As the key point for auto-navigation of mobile robot, path planning is a research hotspot in the field of robot. Generally, the ant colony optimization algorithm (ACO) is one of the commonly used approaches aiming to solve the problem of path planning of mobile robot. Nevertheless, the traditional ACO has the shortcomings such as slow convergence speed, inefficiency and easily fall into local optimal values. Thus, a novel variant of ACO is proposed in this study. In detail, a new heuristic mechanism with orientation information is firstly introduced to add direction guidance during the iteration process, further to advance the convergence speed of algorithm. Secondly, an improved heuristic function is presented to enhance the purposiveness and reduce the number of turn times of planned path. Then, an improved state transition probability rule is introduced to improve the search efficiency significantly and increase the swarm diversity. Moreover, a new method for unevenly distributing initial pheromone concentration is proposed to avoid blind searching. After integrating the four improvements, the new variation of ACO called modified adaptive ant colony optimization algorithm (MAACO) is formed. Subsequently, parameter optimization of MAACO is carried out. For verifying the effectiveness of the proposed MAACO, a series of experiments are conducted based on five static space environment modes and one dynamic environment mode. Comparing with 13 existing approaches for solving the problem of path planning of mobile robot, including several variants of ACO and two commonly used algorithms (A* algorithm and Dijkstra algorithm), the experimental results demonstrate the merits of MAACO in terms of decreasing the path length, reducing the number of turn times, and promoting the convergence speed. In detail, in all the static simulation experiments, the proposed MAACO generates the shortest path length with a standard deviation of zero, and achieves the least number of turn times within the smallest convergence generation. In terms of the five experiments, the average number of reducing turn times is two with a generally reduction ratio of 22.2% compared with the best existing results. The obtained results of MAACO prove its practicality and high-efficiency for path planning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
逸鑫林发布了新的文献求助10
刚刚
小李子完成签到 ,获得积分10
刚刚
哈哈哈哈完成签到 ,获得积分20
刚刚
5477发布了新的文献求助10
1秒前
万能图书馆应助An采纳,获得10
1秒前
毕bb发布了新的文献求助10
3秒前
在水一方应助烟花采纳,获得10
3秒前
烂泥发布了新的文献求助30
4秒前
小pan发布了新的文献求助10
4秒前
5秒前
所所应助逸鑫林采纳,获得10
5秒前
LYY完成签到,获得积分10
5秒前
科研通AI6应助Oz采纳,获得10
5秒前
6秒前
6秒前
6秒前
小青椒应助ZBH采纳,获得20
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
大模型应助relax采纳,获得30
9秒前
Jasper应助泡泡糖采纳,获得10
10秒前
鸭子发布了新的文献求助10
10秒前
kk发布了新的文献求助10
10秒前
11秒前
自觉秋烟发布了新的文献求助10
11秒前
11秒前
cencen发布了新的文献求助10
11秒前
李佳璇发布了新的文献求助10
11秒前
chengli完成签到,获得积分10
12秒前
超帅天曼发布了新的文献求助10
12秒前
sleepingfish应助tsuki采纳,获得20
12秒前
Owen应助帅气的高跟鞋采纳,获得10
13秒前
浮游应助坦率凉面采纳,获得10
14秒前
14秒前
14秒前
14秒前
Tameiki完成签到 ,获得积分20
14秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5206131
求助须知:如何正确求助?哪些是违规求助? 4384653
关于积分的说明 13654174
捐赠科研通 4242976
什么是DOI,文献DOI怎么找? 2327791
邀请新用户注册赠送积分活动 1325532
关于科研通互助平台的介绍 1277639