A comprehensive review of advances in physics-informed neural networks and their applications in complex fluid dynamics

物理 流体力学 统计物理学 人工神经网络 动力学(音乐) 管理科学 人工智能 机械 计算机科学 声学 经济
作者
Chi Zhao,Feifei Zhang,Wenqiang Lou,Xi Wang,Jianyong Yang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (10) 被引量:17
标识
DOI:10.1063/5.0226562
摘要

Physics-informed neural networks (PINNs) represent an emerging computational paradigm that incorporates observed data patterns and the fundamental physical laws of a given problem domain. This approach provides significant advantages in addressing diverse difficulties in the field of complex fluid dynamics. We thoroughly investigated the design of the model architecture, the optimization of the convergence rate, and the development of computational modules for PINNs. However, efficiently and accurately utilizing PINNs to resolve complex fluid dynamics problems remain an enormous barrier. For instance, rapidly deriving surrogate models for turbulence from known data and accurately characterizing flow details in multiphase flow fields present substantial difficulties. Additionally, the prediction of parameters in multi-physics coupled models, achieving balance across all scales in multiscale modeling, and developing standardized test sets encompassing complex fluid dynamic problems are urgent technical breakthroughs needed. This paper discusses the latest advancements in PINNs and their potential applications in complex fluid dynamics, including turbulence, multiphase flows, multi-field coupled flows, and multiscale flows. Furthermore, we analyze the challenges that PINNs face in addressing these fluid dynamics problems and outline future trends in their growth. Our objective is to enhance the integration of deep learning and complex fluid dynamics, facilitating the resolution of more realistic and complex flow problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
桐桐应助六六大顺采纳,获得10
1秒前
汉堡包应助红烧茄子采纳,获得10
1秒前
1秒前
体贴啤酒完成签到,获得积分10
2秒前
郝宝真发布了新的文献求助10
3秒前
bkagyin应助koko采纳,获得10
4秒前
lele发布了新的文献求助10
6秒前
打打应助坚定的剑心采纳,获得10
6秒前
7秒前
丘比特应助碧蓝的傲丝采纳,获得10
7秒前
7秒前
8秒前
重要的天空完成签到,获得积分20
8秒前
8秒前
9秒前
天天快乐应助yyy采纳,获得10
10秒前
涂笑-HZAU发布了新的文献求助10
10秒前
11秒前
雨水发布了新的文献求助10
11秒前
wang完成签到,获得积分0
12秒前
13秒前
上官若男应助海梦喝汽水采纳,获得10
13秒前
14秒前
16秒前
陈佳琪发布了新的文献求助10
16秒前
司藤完成签到 ,获得积分10
18秒前
英格雷西发布了新的文献求助10
18秒前
19秒前
涂笑-HZAU完成签到,获得积分10
19秒前
薛教授发布了新的文献求助10
19秒前
顺利的尔芙完成签到,获得积分10
20秒前
20秒前
22秒前
狂野谷冬完成签到,获得积分10
22秒前
EthanChan发布了新的文献求助30
23秒前
张志远完成签到,获得积分10
23秒前
hhh完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
Canon of Insolation and the Ice-age Problem 380
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
Quantum Sensors Market 2025-2045: Technology, Trends, Players, Forecasts 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 光电子学 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3915600
求助须知:如何正确求助?哪些是违规求助? 3461066
关于积分的说明 10915091
捐赠科研通 3187949
什么是DOI,文献DOI怎么找? 1762202
邀请新用户注册赠送积分活动 852614
科研通“疑难数据库(出版商)”最低求助积分说明 793530