Deep Learning Segmentation and Reconstruction for CT of Chronic Total Coronary Occlusion

医学 组内相关 血运重建 分割 核医学 金标准(测试) 放射科 冠状动脉疾病 冠状动脉造影 人工智能 心肌梗塞 内科学 计算机科学 临床心理学 心理测量学
作者
Meiling Li,Runjianya Ling,Li Yu,Wen‐Yi Yang,Zirong Chen,Dijia Wu,Jiayin Zhang
出处
期刊:Radiology [Radiological Society of North America]
卷期号:306 (3) 被引量:10
标识
DOI:10.1148/radiol.221393
摘要

Background CT imaging of chronic total occlusion (CTO) is useful in guiding revascularization, but manual reconstruction and quantification are time consuming. Purpose To develop and validate a deep learning (DL) model for automated CTO reconstruction. Materials and Methods In this retrospective study, a DL model for automated CTO segmentation and reconstruction was developed using coronary CT angiography images from a training set of 6066 patients (582 with CTO, 5484 without CTO) and a validation set of 1962 patients (208 with CTO, 1754 without CTO). The algorithm was validated using an external test set of 211 patients with CTO. The consistency and measurement agreement of CTO quantification were compared between the DL model and the conventional manual protocol using the intraclass correlation coefficient, Cohen κ coefficient, and Bland-Altman plot. The predictive values of CT-derived Multicenter CTO Registry of Japan (J-CTO) score for revascularization success were evaluated. Results In the external test set, 211 patients (mean age, 66 years ± 11 [SD]; 164 men) with 240 CTO lesions were evaluated. Automated segmentation and reconstruction of CTOs by DL was successful in 95% of lesions (228 of 240) without manual editing and in 48% of lesions (116 of 240) with the conventional manual protocol (P < .001). The total postprocessing and measurement time was shorter for DL than for manual reconstruction (mean, 121 seconds ± 20 vs 456 seconds ± 68; P < .001). The quantitative and qualitative CTO parameters evaluated with the two methods showed excellent correlation (all correlation coefficients > 0.85, all P < .001) and minimal measurement difference. The predictive values of J-CTO score derived from DL and conventional manual quantification for procedure success showed no difference (area under the receiver operating characteristic curve, 0.76 [95% CI: 0.69, 0.82] and 0.76 [95% CI: 0.69, 0.82], respectively; P = .55). Conclusion When compared with manual reconstruction, the deep learning model considerably reduced postprocessing time for chronic total occlusion quantification and had excellent correlation and agreement in the anatomic assessment of occlusion features. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Loewe in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Volume发布了新的文献求助10
1秒前
沐星发布了新的文献求助10
2秒前
星辰大海应助重要的道之采纳,获得10
2秒前
德德完成签到,获得积分10
3秒前
5秒前
小蘑菇应助Chen采纳,获得10
5秒前
bkagyin应助小张采纳,获得10
6秒前
8秒前
9秒前
失眠醉易应助失眠的海云采纳,获得10
10秒前
细心行云完成签到,获得积分10
10秒前
qyang完成签到 ,获得积分10
10秒前
天天发布了新的文献求助20
11秒前
acers发布了新的文献求助10
13秒前
lht完成签到 ,获得积分10
14秒前
安详的未来完成签到,获得积分10
15秒前
16秒前
Jasper应助wen采纳,获得10
17秒前
17秒前
17秒前
S77完成签到,获得积分0
17秒前
Volume完成签到,获得积分10
18秒前
冬菊完成签到 ,获得积分10
19秒前
20秒前
我是老大应助困困包采纳,获得10
20秒前
dd完成签到,获得积分10
20秒前
20秒前
orixero应助丙丙sunny采纳,获得10
20秒前
tangaohao_123456完成签到,获得积分10
20秒前
21秒前
zz发布了新的文献求助10
22秒前
22秒前
SciGPT应助qq158014169采纳,获得10
23秒前
treasure完成签到,获得积分10
24秒前
香蕉觅云应助沐星采纳,获得10
24秒前
Kate发布了新的文献求助10
24秒前
一颗药顽发布了新的文献求助10
25秒前
26秒前
天天完成签到,获得积分10
26秒前
ztl完成签到 ,获得积分10
26秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789328
求助须知:如何正确求助?哪些是违规求助? 3334334
关于积分的说明 10269432
捐赠科研通 3050794
什么是DOI,文献DOI怎么找? 1674162
邀请新用户注册赠送积分活动 802530
科研通“疑难数据库(出版商)”最低求助积分说明 760693