AI meets UAVs: A survey on AI empowered UAV perception systems for precision agriculture

计算机科学 精准农业 软件部署 灵活性(工程) 多样性(控制论) 人工智能 自动化 数据科学 农业 深度学习 机器学习 软件工程 工程类 生态学 统计 生物 机械工程 数学
作者
Jinya Su,Xiaoyong Zhu,Shihua Li,Wen‐Hua Chen
出处
期刊:Neurocomputing [Elsevier]
卷期号:518: 242-270 被引量:183
标识
DOI:10.1016/j.neucom.2022.11.020
摘要

Precision Agriculture (PA) promises to boost crop productivity while reducing agricultural costs and environmental footprints, and therefore is attracting ever-increasing interests in both academia and industry. This management strategy is underpinned by various advanced technologies including Unmanned Aerial Vehicle (UAV) sensing systems and Artificial Intelligence (AI) perception algorithms. In particular, due to their unique advantages such as a low cost, high spatio-temporal resolutions, flexibility, automation functions and minimized risk of operation, UAV sensing systems have been extensively applied in many civilian applications including PA since 2010. In parallel, AI algorithms (deep learning since 2012 in particular) are also drawing ever-increasing attention in different fields, since they are able to analyse an unprecedented volume/velocity/variety of data (semi-) automatically, which are also becoming computationally practical with the advancements of cloud computing, Graphics Processing Units and parallel computing. In this survey paper, therefore, a thorough review is performed on recent use of UAV sensing systems (e.g., UAV platforms, external sensing units) and AI algorithms (mainly supervised learning algorithms) in PA applications throughout the crop life-cycle, as well as the challenges and prospects for future development of UAVs and AI in agriculture sector. It is envisioned that this review is able to provide a timely technical reference, demystifying and promoting research, deployment and successful exploitation of AI empowered UAV perception systems for PA, and therefore contributing to addressing future agricultural and human nutrition challenges.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixm发布了新的文献求助10
刚刚
只只发布了新的文献求助10
刚刚
今晚打老虎完成签到,获得积分10
1秒前
诺u完成签到,获得积分10
2秒前
3秒前
dalian发布了新的文献求助10
3秒前
3秒前
hzbzh完成签到,获得积分10
3秒前
阿喵完成签到 ,获得积分10
6秒前
斯文败类应助柚吱采纳,获得10
6秒前
6秒前
ysy完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
9秒前
zhan完成签到,获得积分10
9秒前
周小凡完成签到,获得积分10
9秒前
11秒前
科研通AI6应助dalian采纳,获得10
11秒前
李健的小迷弟应助菜鸟采纳,获得10
11秒前
大个应助Dai采纳,获得10
12秒前
12秒前
沈默然发布了新的文献求助10
12秒前
付艳发布了新的文献求助10
12秒前
赘婿应助yuyuki采纳,获得10
12秒前
冷锋面应助peng采纳,获得50
12秒前
13秒前
碧蓝白玉发布了新的文献求助10
13秒前
热心幻天发布了新的文献求助10
13秒前
章勇完成签到,获得积分10
13秒前
万能图书馆应助聂难敌采纳,获得10
14秒前
FashionBoy应助infognet采纳,获得10
14秒前
量子星尘发布了新的文献求助10
15秒前
lanxinyue发布了新的文献求助10
15秒前
香蕉觅云应助Hao采纳,获得10
16秒前
吴彬发布了新的文献求助10
16秒前
16秒前
16秒前
wanci应助dandan采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5593772
求助须知:如何正确求助?哪些是违规求助? 4679592
关于积分的说明 14810710
捐赠科研通 4644771
什么是DOI,文献DOI怎么找? 2534653
邀请新用户注册赠送积分活动 1502712
关于科研通互助平台的介绍 1469375