Theoretical Study of the Magnetic Mechanism of a Pca21 C4N3 Monolayer and the Regulation of Its Magnetism by Gas Adsorption

磁矩 磁性 单层 凝聚态物理 铁磁性 化学 单独一对 自旋电子学 材料科学 分子 纳米技术 物理 有机化学
作者
Dongqiu Zhao,Xiao Tang,Xueying Gao,Wanyan Xing,Shuli Liu,Huabing Yin,Lin Ju
出处
期刊:Molecules [MDPI AG]
卷期号:29 (21): 5194-5194
标识
DOI:10.3390/molecules29215194
摘要

For metal-free low-dimensional ferromagnetic materials, a hopeful candidate for next-generation spintronic devices, investigating their magnetic mechanisms and exploring effective ways to regulate their magnetic properties are crucial for advancing their applications. Our work systematically investigated the origin of magnetism of a graphitic carbon nitride (Pca21 C4N3) monolayer based on the analysis on the partial electronic density of states. The magnetic moment of the Pca21 C4N3 originates from the spin-split of the 2pz orbit from special carbon (C) atoms and 2p orbit from N atoms around the Fermi energy, which was caused by the lone pair electrons in nitrogen (N) atoms. Notably, the magnetic moment of the Pca21 C4N3 monolayer could be effectively adjusted by adsorbing nitric oxide (NO) or oxygen (O2) gas molecules. The single magnetic electron from the adsorbed NO pairs with the unpaired electron in the N atom from the substrate, forming a Nsub-Nad bond, which reduces the system’s magnetic moment from 4.00 μB to 2.99 μB. Moreover, the NO adsorption decreases the both spin-down and spin-up bandgaps, causing an increase in photoelectrical response efficiency. As for the case of O2 physisorption, it greatly enhances the magnetic moment of the Pca21 C4N3 monolayer from 4.00 μB to 6.00 μB through ferromagnetic coupling. This method of gas adsorption for tuning magnetic moments is reversible, simple, and cost-effective. Our findings reveal the magnetic mechanism of Pca21 C4N3 and its tunable magnetic performance realized by chemisorbing or physisorbing magnetic gas molecules, providing crucial theoretical foundations for the development and utilization of low-dimensional magnetic materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助WFZ采纳,获得20
刚刚
安详忆雪发布了新的文献求助10
刚刚
1秒前
蓝天发布了新的文献求助10
1秒前
薄荷巧巧发布了新的文献求助10
2秒前
wangliang0329完成签到,获得积分10
3秒前
lu2025完成签到,获得积分10
3秒前
bkagyin应助yuan1yuan2采纳,获得10
4秒前
阿透发布了新的文献求助10
4秒前
LI完成签到,获得积分20
4秒前
纯牛奶完成签到,获得积分10
4秒前
852应助一区发十篇采纳,获得10
4秒前
非理性人群完成签到 ,获得积分10
5秒前
5秒前
上官若男应助小李采纳,获得10
6秒前
LI发布了新的文献求助10
7秒前
大个应助cheng采纳,获得10
8秒前
8秒前
勤恳寒安完成签到,获得积分20
8秒前
8秒前
我是老大应助正直的沛凝采纳,获得10
9秒前
10秒前
neinei完成签到,获得积分10
10秒前
12秒前
12秒前
正直的彩虹完成签到,获得积分10
12秒前
今后应助Ashley采纳,获得10
13秒前
14秒前
阿透完成签到,获得积分10
14秒前
水泥酱发布了新的文献求助10
14秒前
15秒前
JamesPei应助优秀的佳儿采纳,获得10
15秒前
15秒前
15秒前
15秒前
16秒前
16秒前
16秒前
Lin发布了新的文献求助10
16秒前
想发sci、nature吧啦吧啦完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641911
求助须知:如何正确求助?哪些是违规求助? 4757635
关于积分的说明 15015486
捐赠科研通 4800390
什么是DOI,文献DOI怎么找? 2566016
邀请新用户注册赠送积分活动 1524164
关于科研通互助平台的介绍 1483790